scholarly journals STRUCTURE AND SORPTION PROPERTIES OF ACTIVATED CARBON BASED ON PINE BARK CARBONIZATS

2020 ◽  
pp. 289-296
Author(s):  
Evgeniya Vladimirovna Veprikova ◽  
Ivan Petrovich Ivanov

The dates about effect of temperature of carbonizats obtaining from pine bark on evolution of a porous structure and sorption properties of the activated carbons, synthesized by the method of thermoalkaline activation in the presence of КОН were presented. It was determined, that for preparation of activated carbons with the greatest specific surface (1421 and 1655 m2/g) and micropores volume (0.58 и 0.71 sm3/g) pine bark carbonizats reasonable to obtain at temperature 300 and 400 °С correspondingly. The correlation of a iodine sorption with volume of micropores width 0.73–3.0 nm (R2=0.964) and a methylene blue sorption with volume of micropores width 0.84–2.0 nm (R2=0.995), which present in the activated carbons structure, was established. It was shown, that low capacity of the activated carbons to vitamin B12 sorption determine by low mesopores volume with width ≥5 nm (no more than 0.0014 sm3/g). It was shown, that the activated carbon based on carbonizat obtained at 400 °С demonstrates a maximal sorption capacity to a iodine and a methylene blue (1.57 g/g и 697.1 mg/g correspondingly), that in 1.4 and 2.7 times exceeds the dates of an industrial activated carbon for medical purposes.

2019 ◽  
pp. 325-333
Author(s):  
Evgeniya Vladimirovna Veprikova ◽  
Ivan Petrovich Ivanov ◽  
Nikolay Vasil'yevich Chesnokov ◽  
Boris Nikolayevich Kuznetsov

The effect of temperature of aspen bark pre-carbonization on evolution of a porous structure and sorption properties of the carbon sorbents prepared in results of thermo alkaline activation of carbonizats with hydroxide potassium was studied.  The relationship of a sorption of methylene blue and vitamin B12 by the sorbents from aspen bark to a volume and size of pores was established. It was shown, that the carbon sorbents capacity at а methylene blue are defined by pores with width 0.86–2.95 nm, and at a vitamin B12 – 3.18–6.89 nm. Comparation of the porous structures parameters and sorption properties of the carbon sorbents from aspen bark and commercial activated carbon for medical purposes was maked. Kinetic of markers sorption onto sorbents with different porous structure was studied and the corresponding rate constants were calculated. The possibility preparation of a carbon sorbent have high rate of vitamin B12 sorption (rate constant is 3.953 min–1) was shown.  The determinations of a sorption capacity of sorbents in conditions assume at enterosorbents test were carry out. It was determined, that sorbents, prepped from aspen bark, exceeds the sample of industrial activated carbon for medical purposes at sorption capacity of methylene blue and vitamin B12 in 1.7 and 1.5 time, correspondingly.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 137-145
Author(s):  
M. V. Borysenko ◽  
◽  
Ya. M. Chubenko ◽  
I. I. Voitko ◽  
T. S. Chorna ◽  
...  

In this work, we investigated granular and powder activated carbons (AC) – initial and waste with adsorbed impurities after purification of technical glycerin and subsequent washing with water. The aim of this work was to quantify the adsorbed impurities in the spent AC using thermal analysis (TA) and to work out the conditions for thermal regeneration of AC. TA of AC samples was carried out in an atmosphere of helium and air; the specific surface area of AC was measured by the method of low-temperature desorption of argon (SAr). It was established by the TA method that water is released in the temperature range of 20 – 170 °C, and glycerin – 170 – 400 °C. Spent AC contains up to 22.8 wt. % H2O and up to 44.6 wt. % C3H5(OH)3. Based on these data, it was proposed to regenerate spent coal by heating at 400 °C in air. In the case of a granular AC sample, the regeneration proceeds completely, while for a powder AC sample, the specific surface area with respect to argon is restored only by 22 %, from the initial 2170 m2/g. The adsorption isotherms of methylene blue (MB) of the initial samples are located higher than for the spent ones, since in the spent ones part of the surface is occupied by adsorbed glycerin. The SMB values calculated from the adsorption of methylene blue in the spent AC samples are strongly overestimated in comparison with SAr. Probably, MB displaces glycerin from the surface or interacts with it to form complexes.


2015 ◽  
Vol 73 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Sergio Montoya-Suarez ◽  
Fredy Colpas-Castillo ◽  
Edgardo Meza-Fuentes ◽  
Johana Rodríguez-Ruiz ◽  
Roberto Fernandez-Maestre

Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer–Emmett–Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78–82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35–0.37 mg/g, and methylene blue adsorption was 40–110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2011 ◽  
Vol 699 ◽  
pp. 245-264 ◽  
Author(s):  
A. Xavier ◽  
J. Gandhi Rajan ◽  
D. Usha ◽  
R Sathya

Methylene blue is a heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCl. It has used in the biology and chemistry field. At room temperature, it appears as a solid, odourless dark green powder that yields blue solution when dissolved in water. As a part of removal of methylene blue dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of Methylene blue adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbents. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data the modeled with Freundlich and Langmuir isotherms. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MB is particular. These results are reported highly efficient and effective and low cost adsorbent for the MB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


2019 ◽  
Vol 24 (6) ◽  
pp. 45
Author(s):  
Mayada M . Ali1 ◽  
Firas E. Fatthee2 ◽  
Ahmed AbdulkarimThunoon3

In the present study, activated carbons were prepared from Punicagranatum .sp, using potassium hydroxide as activating agent. Punicagranatum .sp activated carbon(PGAC) was characterization using methylene blue number, iodine number and some physical properties such as humidity, ash content and density. The perfect measurement for this study was the proportion of (1:2.5)(wood : KOH) to give 560mg for iodine number and 67mg for methylene blue number which are good result.   http://dx.doi.org/10.25130/tjps.24.2019.107


2019 ◽  
Vol 15 (3) ◽  
pp. 89
Author(s):  
Doan Nguyen Hoang Anh ◽  
Pham Mai Ly ◽  
Dao Minh Trung

Study on preparation of activated carbons by chemical activation with NaOH using the impregnatio ratio of 3:1 (NaOH:char) from Macadamia nut shell in terms on temperature and time. The research result showed that Methylene Blue (MB) absorption at optimum temperature and time of 300oC and 90 minutes was 205,68 mg and the removal efficiency was 97,59% corresponding to the color reduction from 349,67 Pt-Co to 8,4 Pt-Co. This results showed that activated carbons prepared from Maccadia nut shells and chemical activation with NaOH had the capable of color treatment in textile wastewater.


Sign in / Sign up

Export Citation Format

Share Document