scholarly journals ANTIMICROBIAL SENSITIVITY OF GRAM-NEGATIVE BACTERIA WITH BETA LACTAM /BETA LACTAMASE INHIBITOR COMBINATION OF DRUGS IN COMPARISON TO OTHER ANTIBIOTICS IN TERTIARY CARE CENTER

2019 ◽  
Vol 8 (7) ◽  
pp. 416-420
Author(s):  
Rammurugan N ◽  
Sasireha R
2020 ◽  
Vol 7 (1) ◽  
pp. 23
Author(s):  
Ravikumar Raju ◽  
Archana Agrawal ◽  
ChakrakodiN Varun ◽  
Anjali Shette ◽  
DaisyVanitha John

2017 ◽  
Vol 10 (1) ◽  
pp. 8-12
Author(s):  
Shikha Paul ◽  
Sanya Tahmina Jhora ◽  
Prashanta Prasun Dey ◽  
Bilkis Ara Begum

Detection of Extended spectrum beta lactamase (ESBL) enzyme producing bacteria in hospital settings is vital as ESBL genes are transmissible. This study was carried out to determine the distribution of ESBL producing gram negative isolates at a tertiary care hospital in Dhaka city which deals with the patients hailing from relatively low socioeconomic status.Onehundred and twenty four gram negative bacteria isolated from different clinical specimens from outpatient and inpatient departments of Sir Salimullah Medical College and Mitford Hospital (SSMC & MH) were tested for ESBL by E test ESBL method in the department of microbiology of Sir Salimullah medical college (SSMC) from March 2013 to August 2013.Out of 124 gram negative bacteria 69 (55.65%) were positive for ESBL. Among the ESBL producers, Esch.coli was the highest (46.38%) which was followed by Serratia spp (11.59%), Enterobacter spp (10.14%), Proteus spp, (8.70%), Acinetobacter spp.(7.24%) and Klebsiella spp.(5.79%). Out of 32 Esch.coli isolated from outpatient department, 10 (31.25%) were positive for ESBL. On the other hand out of 27 Esch. coli isolated from inpatient department, 22 (81.48%) were positive for ESBL. The difference was statistically significant (p<0.001).So the present study reveals that the distribution of ESBL producers is more among the hospitalized patients than the patients of the community.Bangladesh J Med Microbiol 2016; 10 (1): 8-12


1995 ◽  
Vol 29 (5) ◽  
pp. 501-514 ◽  
Author(s):  
Lori L Schoonover ◽  
Donna J Occhipinti ◽  
Keith A Rodvold ◽  
Larry H Danziger

Objective: To discuss the antimicrobial activity, pharmacokinetics, clinical efficacy, and adverse effect profile of piperacillin/tazobactam, a new beta-lactam/beta-lactamase inhibitor combination. Data Sources: Literature was identified by MEDLINE search of the medical literature, review of selected references, and data provided by the manufacturer. Study Selection: In vitro susceptibility data were surveyed from studies following the methods of the National Committee for Clinical Laboratory Standards. Data evaluating clinical efficacy were selected from all published trials and abstracts. Additional information concerning safety, chemistry, and pharmacokinetics was reviewed. Data Synthesis: The antimicrobial activity of piperacillin is enhanced by addition of tazobactam against gram-positive, gram-negative, and anaerobic bacteria. Tazobactam is active against a broad spectrum of plasmid and chromosomally mediated enzymes and has minimal ability to induce class I chromosomally mediated beta-lactamase enzymes. Piperacillin/tazobactam's expanded activity appears encouraging in the treatment of mixed aerobic and anaerobic infections. Direct comparisons of ticarcillin/clavulanate and piperacillin/tazobactam for the treatment of lower respiratory tract infections showed piperacillin/tazobactam to be clinically superior, and in the treatment of skin and soft tissue infections the 2 agents were comparable. For the treatment of intraabdominal infections, piperacillin/tazobactam was at least as effective as imipenem/cilastatin and clindamycin plus gentamicin. Conclusions: The combination of tazobactam with piperacillin results in an antimicrobial agent with enhanced activity against most beta-lactamase–producing organisms. Preliminary data indicate that piperacillin/tazobactam has proven clinical efficacy in the treatment of a variety of infections, especially polymicrobic infections.


2020 ◽  
Vol 58 (232) ◽  
Author(s):  
Ashmita Paudel ◽  
Surya Prasad Devkota ◽  
Anima Shrestha ◽  
Anil Kumar Shah

Introduction: Gram-negative isolates harboring mobilized colistin resistance (mcr-1) gene are a great threat to human health. They have been reported worldwide among various bacterial isolates. This work aimed to study the prevalence of colistin resistance among Gram-negative bacteria and the incidence of mcr-1 gene among these isolates. Methods: A descriptive cross-sectional study was done at a tertiary care center from June 2016 to February 2017. An ethical approval was taken from review board of the Nepal Health Research Council (Reg. no: 274/2016). Convenience sampling was used. The data was collected and analyzed using Microsoft Excel 2010 and Statistical Package for Social Sciences (SPSS) Version 16 . Point estimate at 95% Confidence Interval was calculated along with frequency and proportion for binary data. Results: Among 485 gram-negative isolates, only 13 (2.68%) (1.26-6.62 at 95% Confidence Interval) isolates were colistin-resistant and mcr-1 was present in two isolates. Predominant colistin-resistant isolates were E. coli 6 (4.1%), Enterobacter spp 2 (2.81%), and Acinetobacter spp 2 (2.81%). A high level of colistin-resistance was noted in 4 (30.7%) isolates as indicated by the very high value of colistin MIC (>256 µg/ml). ICU was the major site of isolation of colistin-resistant and mcr-1 positive pathogens. The majority of colistin-resistant isolates were highly drug-resistant and were sensitive only to polymyxin B. Antibiotics like imipenem, amikacin, gentamicin, aztreonam, ciprofloxacin, and piperacillin-tazobactam were effective for few of these isolates. Conclusions: Though the prevalence of mcr-1 gene was low among colistin-resistant gram-negative isolates, the resistant pattern was quite alarming as these isolates were highly drug-resistant.


Sign in / Sign up

Export Citation Format

Share Document