Within and across populations complex traits and diseases prediction using summary statistics from large-scale genomewide association studies

2021 ◽  
Author(s):  
◽  
Ying Wang
2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2017 ◽  
Author(s):  
Qiongshi Lu ◽  
Boyang Li ◽  
Derek Ou ◽  
Margret Erlendsdottir ◽  
Ryan L. Powles ◽  
...  

AbstractDespite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits’ genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses we demonstrate that our method provides accurate covariance estimates, thus enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (Ntotal ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer’s disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD’s correlation with cognitive traits and hints at an autoimmune component for ALS.


2016 ◽  
Author(s):  
Alicia R. Martin ◽  
Christopher R. Gignoux ◽  
Raymond K. Walters ◽  
Genevieve L. Wojcik ◽  
Benjamin M. Neale ◽  
...  

AbstractThe vast majority of genome-wide association studies are performed in Europeans, and their transferability to other populations is dependent on many factors (e.g. linkage disequilibrium, allele frequencies, genetic architecture). As medical genomics studies become increasingly large and diverse, gaining insights into population history and consequently the transferability of disease risk measurement is critical. Here, we disentangle recent population history in the widely-used 1000 Genomes Project reference panel, with an emphasis on populations underrepresented in medical studies. To examine the transferability of single-ancestry GWAS, we used published summary statistics to calculate polygenic risk scores for six well-studied traits and diseases. We identified directional inconsistencies in all scores; for example, height is predicted to decrease with genetic distance from Europeans, despite robust anthropological evidence that West Africans are as tall as Europeans on average. To gain deeper quantitative insights into GWAS transferability, we developed a complex trait coalescent-based simulation framework considering effects of polygenicity, causal allele frequency divergence, and heritability. As expected, correlations between true and inferred risk were typically highest in the population from which summary statistics were derived. We demonstrated that scores inferred from European GWAS were biased by genetic drift in other populations even when choosing the same causal variants, and that biases in any direction were possible and unpredictable. This work cautions that summarizing findings from large-scale GWAS may have limited portability to other populations using standard approaches, and highlights the need for generalized risk prediction methods and the inclusion of more diverse individuals in medical genomics.


Author(s):  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Wei Jiang ◽  
Yixuan Ye ◽  
Qiongshi Lu ◽  
...  

AbstractGenetic correlation is the correlation of additive genetic effects on two phenotypes. It is an informative metric to quantify the overall genetic similarity between complex traits, which provides insights into their polygenic genetic architecture. Several methods have been proposed to estimate genetic correlations based on data collected from genome-wide association studies (GWAS). Due to the easy access of GWAS summary statistics and computational efficiency, methods only requiring GWAS summary statistics as input have become more popular than methods utilizing individual-level genotype data. Here, we present a benchmark study for different summary-statistics-based genetic correlation estimation methods through simulation and real data applications. We focus on two major technical challenges in estimating genetic correlation: marker dependency caused by linkage disequilibrium (LD) and sample overlap between different studies. To assess the performance of different methods in the presence of these two challenges, we first conducted comprehensive simulations with diverse LD patterns and sample overlaps. Then we applied these methods to real GWAS summary statistics for a wide spectrum of complex traits. Based on these experiments, we conclude that methods relying on accurate LD estimation are less robust in real data applications compared to other methods due to the imprecision of LD obtained from reference panels. Our findings offer a guidance on how to appropriately choose the method for genetic correlation estimation in post-GWAS analysis in interpretation.


2019 ◽  
Author(s):  
Yuhua Zhang ◽  
Corbin Quick ◽  
Ketian Yu ◽  
Alvaro Barbeira ◽  
Francesca Luca ◽  
...  

AbstractTranscriptome-wide association studies (TWAS), an integrative framework using expression quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged as a promising method to investigate the biological mechanisms underlying associations between genotypes and complex traits. However, challenges remain in interpreting TWAS results, especially regarding their causality implications. In this paper, we describe a new computational framework, probabilistic TWAS (PTWAS), to detect associations and investigate causal relationships between gene expression and complex traits. We use established concepts and principles from instrumental variables (IV) analysis to delineate and address the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect TWAS associations than existing methods. Additionally, PTWAS provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal effects of gene expression on complex traits. These features make PTWAS uniquely suited for in-depth investigations of the biological mechanisms that contribute to complex trait variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze 114 complex traits using GWAS summary statistics from several large-scale projects, including the UK Biobank. Our analysis reveals an abundance of genes with strong evidence of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and tissue-relevance of these effects across complex traits. We distribute software and eQTL annotations to enable users performing rigorous TWAS analysis by leveraging the full potentials of the latest GTEx multi-tissue eQTL data.


2021 ◽  
Author(s):  
Alex N. Nguyen Ba ◽  
Katherine R. Lawrence ◽  
Artur Rego-Costa ◽  
Shreyas Gopalakrishnan ◽  
Daniel Temko ◽  
...  

Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.Significance statementUnderstanding the genetic basis of important phenotypes is a central goal of genetics. However, the highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies (GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a scale two orders of magnitude larger than the previous state of the art. The resulting increase in power reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems biology, and have implications for large-scale GWAS in human populations.


2019 ◽  
Author(s):  
Yi Yang ◽  
Xingjie Shi ◽  
Yuling Jiao ◽  
Jian Huang ◽  
Min Chen ◽  
...  

AbstractMotivationAlthough genome-wide association studies (GWAS) have deepened our understanding of the genetic architecture of complex traits, the mechanistic links that underlie how genetic variants cause complex traits remains elusive. To advance our understanding of the underlying mechanistic links, various consortia have collected a vast volume of genomic data that enable us to investigate the role that genetic variants play in gene expression regulation. Recently, a collaborative mixed model (CoMM) [42] was proposed to jointly interrogate genome on complex traits by integrating both the GWAS dataset and the expression quantitative trait loci (eQTL) dataset. Although CoMM is a powerful approach that leverages regulatory information while accounting for the uncertainty in using an eQTL dataset, it requires individual-level GWAS data and cannot fully make use of widely available GWAS summary statistics. Therefore, statistically efficient methods that leverages transcriptome information using only summary statistics information from GWAS data are required.ResultsIn this study, we propose a novel probabilistic model, CoMM-S2, to examine the mechanistic role that genetic variants play, by using only GWAS summary statistics instead of individual-level GWAS data. Similar to CoMM which uses individual-level GWAS data, CoMM-S2 combines two models: the first model examines the relationship between gene expression and genotype, while the second model examines the relationship between the phenotype and the predicted gene expression from the first model. Distinct from CoMM, CoMM-S2 requires only GWAS summary statistics. Using both simulation studies and real data analysis, we demonstrate that even though CoMM-S2 utilizes GWAS summary statistics, it has comparable performance as CoMM, which uses individual-level GWAS [email protected] and implementationThe implement of CoMM-S2 is included in the CoMM package that can be downloaded from https://github.com/gordonliu810822/CoMM.Supplementary informationSupplementary data are available at Bioinformatics online.


2015 ◽  
Author(s):  
Guo-Bo Chen ◽  
Sang Hong Lee ◽  
Matthew R Robinson ◽  
Maciej Trzaskowski ◽  
Zhi-Xiang Zhu ◽  
...  

Genome-wide association studies (GWASs) have been successful in discovering replicable SNP-trait associations for many quantitative traits and common diseases in humans. Typically the effect sizes of SNP alleles are very small and this has led to large genome-wide association meta-analyses (GWAMA) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study we propose a new set of metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We proposed a pair of methods in examining the concordance between demographic information and summary statistics. In method I, we use the population genetics Fststatistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. In method II, we conduct principal component analysis based on reported allele frequencies, and is able to recover the ancestral information for each cohort. In addition, we propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. Finally, to quantify unknown sample overlap across all pairs of cohorts we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Sean M. Burnard ◽  
Rodney A. Lea ◽  
Miles Benton ◽  
David Eccles ◽  
Daniel W. Kennedy ◽  
...  

Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple Sclerosis (MS), are reliant on per-SNP p-values and are therefore heavily burdened by multiple testing correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required, while ignoring potentially valuable information that is readily available in existing datasets. To overcome this, we used penalised regression incorporating elastic net with a stability selection method by iterative subsampling to detect the potential interaction of loci with MS risk. Through re-analysis of the ANZgene dataset (1617 cases and 1988 controls) and an IMSGC dataset as a replication cohort (1313 cases and 1458 controls), we identified new association signals for MS predisposition, including SNPs above and below conventional significance thresholds while targeting two natural killer receptor loci and the well-established HLA loci. For example, rs2844482 (98.1% iterations), otherwise ignored by conventional statistics (p = 0.673) in the same dataset, was independently strongly associated with MS in another GWAS that required more than 40 times the number of cases (~45 K). Further comparison of our hits to those present in a large-scale meta-analysis, confirmed that the majority of SNPs identified by the elastic net model reached conventional statistical GWAS thresholds (p < 5 × 10−8) in this much larger dataset. Moreover, we found that gene variants involved in oxidative stress, in addition to innate immunity, were associated with MS. Overall, this study highlights the benefit of using more advanced statistical methods to (re-)analyse subtle genetic variation among loci that have a biological basis for their contribution to disease risk.


2019 ◽  
Author(s):  
Wen Zhang ◽  
Georgios Voloudakis ◽  
Veera M. Rajagopal ◽  
Ben Reahead ◽  
Joel T. Dudley ◽  
...  

AbstractTranscriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we improve the accuracy of transcriptome prediction and the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge to biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify known and novel compounds that mimic or reverse trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.


Sign in / Sign up

Export Citation Format

Share Document