Cross-sectional shape effects on resistance to uniform flow in open channels and non-circular closed circuits

1980 ◽  
Author(s):  
A. K. Kazemipour
1986 ◽  
Vol 164 ◽  
pp. 401-427 ◽  
Author(s):  
S. H. Lee ◽  
L. G. Leal

A numerical implementation of the method of matched asymptotic expansions is proposed to analyse two-dimensional uniform streaming flow at low Reynolds number past a straight cylinder (or cylinders) of arbitrary cross-sectional shape. General solutions for both the Stokes and Oseen equations in two dimensions are expressed in terms of a boundary distribution of fundamental single- and double-layer singularities. These general solutions are then converted to integral equations for the unknown distributions of singularity strengths by application of boundary conditions at the cylinder surface, and matching conditions between the Stokes and Oseen solutions. By solving these integral equations, using collocation methods familiar from three-dimensional application of ‘boundary integral’ methods for solutions of Stokes equation, we generate a uniformly valid approximation to the solution for the whole domain.We demonstrate the method by considering, as numerical examples, uniform flow past an elliptic cylinder, uniform flow past a cylinder of rectangular cross-section, and uniform flow past two parallel cylinders which may be either equal in radius, or of different sizes.


2015 ◽  
Vol 12 (12) ◽  
pp. 5171-5178
Author(s):  
Hao Wang ◽  
Sheng Chang ◽  
Jin He ◽  
Qijun Huang ◽  
Gaofeng Wang

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Liu ◽  
Yoshihiro Mochimaru

As a self-acting fluid-lubricated herringbone grooves journal bearing, a trapezoidal cross-sectional shape of grooves is considered. Trapezoidal groove shape effects on its bearing characteristics such as variations of load capacity, attitude, and friction torque for various trapezoidal angle of groove are determined.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


Author(s):  
Yingzi Chen ◽  
Zhiyuan Yang ◽  
Wenxiong Peng ◽  
Huaiqing Zhang

Magnetic pulse welding is a high-speed welding technology, which is suitable for welding light metal materials. In the magnetic pulse welding system, the field shaper can increase the service life of the coil and contribute to concentrating the magnetic field in the welding area. Therefore, optimizing the structure of the field shaper can effectively improve the efficiency of the system. This paper analyzed the influence of cross-sectional shape and inner angle of the field shaper on the ability of concentrating magnetic field via COMSOL software. The structural strength of various field shapers was also analyzed in ABAQUS. Simulation results show that the inner edge of the field shaper directly affects the deformation and welding effect of the tube. So, a new shape of field shaper was proposed and the experimental results prove that the new field shaper has better performance than the conventional field shaper.


Sign in / Sign up

Export Citation Format

Share Document