scholarly journals Effect of ozonized olive oil on oral levels of Candida spp. in patients with denture stomatitis

2018 ◽  
Vol 21 (1) ◽  
pp. 111 ◽  
Author(s):  
Erica Crastechini ◽  
Cristiane Yumi Koga-Ito ◽  
Suzan De Fátima Machado ◽  
Guilherme Rodrigues Teodoro ◽  
Graziella Nuernberg Back-Brito ◽  
...  

<p><strong>Objective</strong>: The aim of this study was to evaluate the effect of ozonized oil (OZ) on the oral levels of <em>Candida </em>spp. in patients with denture stomatitis. <strong>Material and Methods</strong>: In vitro tests were performed to validate antifungal activity and to standardize OZ conditions. Antifungal activity was screened against <em>C. albicans </em>and five non-<em>albicans </em>species (<em>C. tropicalis, C. dubliniensis, C. krusei, C. guilliermondii,</em> and <em>C. parapsilosis</em>). Also, the effects on <em>C. albicans </em>planktonic and biofilm were evaluated. After validation, OZ was included in a therapeutic protocol of denture stomatitis in vivo. Thirty patients used OZ and 20 used sodium bicarbonate (SB) for 14 days. After 7 and 14 days, clinical evaluation, isolation and identification of yeasts were performed. Isolates were identified by phenotypic and genotypic tests. Ozonized oil showed in vitro antifungal activity against all species of <em>Candida</em>. Ozonized oil reduced the number of viable cells in <em>C. albicans </em>biofilms. Oral candidal levels were lower in relation to baseline both after after 14 days of treatment with SB and OZ. <strong>Results</strong>: A total of 493 <em>Candida </em>spp. isolates was obtained and 80% were identified as <em>C. albicans</em>. Remission of denture stomatitis was observed in all patients after 7 days of treatment in both groups. <strong>Conclusion</strong>: Within the limits of the study we can conclude that ozonized olive oil can be a new alternative for the control of biofilm in patients with denture stomatitis.</p><p align="left"> </p><p><strong>Keywords<em></em></strong></p><p>Ozone; <em>Candida</em>; Antifungal Agents; Stomatitis; Denture.</p><p> </p>

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 998
Author(s):  
Virgínia Barreto Lordello ◽  
Andréia Bagliotti Meneguin ◽  
Sarah Raquel de Annunzio ◽  
Maria Pía Taranto ◽  
Marlus Chorilli ◽  
...  

Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.


2013 ◽  
Vol 7 (20) ◽  
pp. 2245-2250 ◽  
Author(s):  
Brum Cleff Marlete ◽  
Madrid Isabel ◽  
Raquel Meinerz Ana ◽  
Carlos Arauacute jo Meireles Maacute rio ◽  
Roberto Braga de Mello Joatilde o ◽  
...  

Author(s):  
Amanda P. Mattos ◽  
Fabricio P. Povh ◽  
Bruna B. Rissato ◽  
Vítor V. Schwan ◽  
Kátia R. F. Schwan-Estrada

Aims: This study is aimed to evaluate the in vitro antifungal activity effect of the crude aqueous extract (CAE), hydrolate (HY) and essential oil (EO) of Corymbia citriodora, Cymbopogon citratus, Cymbopogon flexuosus and Curcuma longa against the phytopathogenic fungi Alternaria steviae, Botryosphaeria dothidea, Colletotrichum gloeosporioides and Sclerotium rolfsii, and assess, in situ, the effectiveness of CAE of medicinal plants in reducing the severity of the cucumber anthracnose. Methodology: The EOs and HYs were obtained by hydrodistillation. The CAEs were prepared by the turbolysis method. Mycelial growth of the fungi was measured daily, by the diametrically opposite method. In the in vivo test, the CAEs were sprayed on the cotyledon leaves of healthy cucumber plants with three days after were inoculated with C. lagenarium. The severity of assessment of the disease was based on a scale of notes. Results: The medicinal plants studied showed antifungal activity against all or almost all pathogens. In general, treatment with CAE and HY of C. longa revealed the highest inhibition against the fungi tested. With the exception of the EO of C. longa, the other EOs showed total inhibition against all the fungi and in all the concentrations tested. Compared to control, in in vivo assays CAE of C. citratus presents a potential for control of cucumber anthracnose reducing the severity of the disease. Conclusion: The medicinal plants studied produce compounds associated with antimicrobial activity.


2021 ◽  
Vol 14 (9) ◽  
pp. 917
Author(s):  
Daniel Méndez ◽  
Julio C. Escalona-Arranz ◽  
Enrique Molina Pérez ◽  
Kenn Foubert ◽  
An Matheeussen ◽  
...  

Coccoloba cowellii Britton (Polygonaceae, order Caryophyllales) is an endemic and critically endangered plant species that only grows in the municipality of Camagüey, a province of Cuba. A preliminary investigation of its total methanolic extract led to the discovery of promising antifungal activity. In this study, a bioassay-guided fractionation allowed the isolation of quercetin and four methoxyflavonoids: 3-O-methylquercetin, myricetin 3,3′,4′-trimethyl ether, 6-methoxymyricetin 3,4′-dimethyl ether, and 6-methoxymyricetin 3,3′,4′-trimethyl ether. The leaf extract, fractions, and compounds were tested against various fungi and showed strong in vitro antifungal activity against Cryptococcus neoformans and various Candida spp. with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by a resazurin assay. A Candida albicans SC5314 antibiofilm assay indicated that the antifungal activity of C. cowellii extracts and constituents is mainly targeted to planktonic cells. The total methanolic extract showed higher and broader activity compared with the fractions and mixture of compounds.


1996 ◽  
Vol 3 (5) ◽  
pp. 227-232 ◽  
Author(s):  
Mihai Barboiu ◽  
Marilena Cimpoesu ◽  
Cornelia Guran ◽  
Claudiu T. Supuran

Metal complexes of the title ligand (L) containing Co(II), Ni(II) and Cu(II) were prepared and characterized by elemental analysis, IR, electronic spectroscopy and conductimetry. The new derivatives, possessing the following formulae, CuL2(OH)2, NiL2Cl2, and [Co2LCl4]n showed in vitro antifungal activity against Aspergillus and Candida spp.


2002 ◽  
Vol 46 (2) ◽  
pp. 308-314 ◽  
Author(s):  
Masaru Matsumoto ◽  
Kazuya Ishida ◽  
Akihiro Konagai ◽  
Kazunori Maebashi ◽  
Takemitsu Asaoka

ABSTRACT SS750 [(R)-(−)-2-(2,4-difluorophenyl)-1-(ethylsulfonyl)-1,1-difluoro-3-(1H-1,2,4-triazol-1-yl)-2-propanol] is a new triazole, and its potential as an antifungal agent was evaluated by in vitro and in vivo studies. In a comparison of the MICs at which 50% of isolates are inhibited (MIC50s) for all strains of Candida species and Cryptococcus neoformans tested, SS750 was four times or more active than fluconazole and had activity comparable to that of itraconazole. The most important advantage of SS750 was that, when the MIC90s were compared, SS750 had 64 and 32 times greater antifungal activities than fluconazole against Candida krusei and Candida glabrata, respectively, which are intrinsically less susceptible to fluconazole. In cyclophosphamide-immunosuppressed mouse models of systemic and pulmonary candidiasis caused by C. albicans, oral SS750 prolonged the number of days of survival of infected animals in a dose-dependent manner and was 4 and ≥64 times more potent than fluconazole and itraconazole, respectively. In a safety profile, SS750, like fluconazole, had less of an affinity for binding to mammalian cytochrome P450 compared with that of ketoconazole, despite its strong affinity for binding to fungal cytochrome P450. The mechanism for the increased in vitro antifungal activity of SS750 against C. krusei is partially due to the potent inhibitory activity (3.7 times versus that of fluconazole) of C. krusei cytochrome P450 sterol 14α-demethylase; SS750 showed a strong affinity for binding to cytochrome P450 of C. krusei, indicating that SS750 acts by inhibiting the cytochrome P450 sterol 14α-demethylase of fungal cells.


Author(s):  
Ernani Canuto Figueiredo Junior ◽  
◽  
Yuri Wanderley Cavalcanti ◽  
Andressa Brito Lira ◽  
Hilzeth de Luna Freire Pessoa ◽  
...  

This study determined phytochemical composition, antifungal activity and toxicity in vitro and in vivo of Syzygium cumini leaves extract (Sc). Thus, was characterized by gas chromatography coupled to mass spectrometry and submitted to determination of Minimum Inhibitory (MIC) and Fungicidal concentrations (MFC) on reference and clinical strains of Candida spp. and by growth kinetics assays. Toxicity was verified using in vitro assays of hemolysis, osmotic fragility, oxidant and antioxidant activity in human erythrocytes and by in vivo acute systemic toxicity in Galleria mellonella larvae. Fourteen different compounds were identified in Sc, which showed antifungal activity (MIC between 31.25-125 μg/mL) with fungistatic effect on Candida. At antifungal concentrations, it demonstrated low cytotoxicity, antioxidant activity and neglible in vivo toxicity. Thus, Sc demonstrated a promising antifungal potential, with low toxicity, indicating that this extract can be a safe and effective alternative antifungal agent.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7208
Author(s):  
Jürgen Krauß ◽  
Christoph Müller ◽  
Monika Klimt ◽  
Leandro Jorquera Valero ◽  
José Francisco Martínez ◽  
...  

The aliphatic heterocycles piperidine and morpholine are core structures of well-known antifungals such as fenpropidin and fenpropimorph, commonly used as agrofungicides, and the related morpholine amorolfine is approved for the treatment of dermal mycoses in humans. Inspired by these lead structures, we describe here the synthesis and biological evaluation of 4-aminopiperidines as a novel chemotype of antifungals with remarkable antifungal activity. A library of more than 30 4-aminopiperidines was synthesized, starting from N-substituted 4-piperidone derivatives by reductive amination with appropriate amines using sodium triacetoxyborohydride. Antifungal activity was determined on the model strain Yarrowia lipolytica, and some compounds showed interesting growth-inhibiting activity. These compounds were tested on 20 clinically relevant fungal isolates (Aspergillus spp., Candida spp., Mucormycetes) by standardized microbroth dilution assays. Two of the six compounds, 1-benzyl-N-dodecylpiperidin-4-amine and N-dodecyl-1-phenethylpiperidin-4-amine, were identified as promising candidates for further development based on their in vitro antifungal activity against Candida spp. and Aspergillus spp. Antifungal activity was determined for 18 Aspergillus spp. and 19 Candida spp., and their impact on ergosterol and cholesterol biosynthesis was determined. Toxicity was determined on HL-60, HUVEC, and MCF10A cells, and in the alternative in vivo model Galleria mellonella. Analysis of sterol patterns after incubation gave valuable insights into the putative molecular mechanism of action, indicating inhibition of the enzymes sterol C14-reductase and sterol C8-isomerase in fungal ergosterol biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document