scholarly journals Current perspectives of 3d printing in dental applications

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Safia Shaikh ◽  
Prashant Nahar ◽  
Shoeb Shaikh ◽  
Arshad jamal Sayed ◽  
Habibullah Mohammed Ali

Objective: To evaluate the applications of 3d printing /additive manufacturing (AM) in dental education & clinical dentistry and elaborate various 3d printing technologies, its benefits, limitations and future scope. Methods: Research papers on the application of 3d printing in dentistry were searched in Scopus and Pubmed and studied using bibliometric analysis.  This review briefly describes various types of 3d printing technologies with their accuracy, use of different materials for 3d printing and their respective dental applications. It also discusses various steps used to create 3D printed dental model using this technology. Furthermore, the application of this technology in dental education and various clinical procedures are discussed.  Results: 3d printing is an innovative technology making a paradigm shift towards treatment customization. It helps in customized production of dental implants, surgical guides, anatomic models etc. using computer-aided design (CAD) data. This technology coupled with state-of-the-art imaging techniques and CAD software has enabled, especially oral surgeons to precisely plan and execute complex surgeries with relative ease, high accuracy and lesser time. 3d printing is also being utilized in other disciplines of dentistry to prepare aligners, crown and bridge, endodontic guides, periodontal surgery guides, surgical models for treatment planning and patient education. Alongside its possibilities have also been explored in preclinical skills in operative, endodontics etc.    KEYWORDS  3D printing; Additive manufacturing; Dental applications of 3d printing.

2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Author(s):  
Brooke Mansfield ◽  
Sabrina Torres ◽  
Tianyu Yu ◽  
Dazhong Wu

Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.


Author(s):  
Roydan Dsouza

3D Printing refers to a class of technology that can automatically construct 3-dimensional physical models from Computer Aided Design (CAD) data. Reduction of product development cycle time is a major concern in industries for achieving competitive advantage. Endodontic dentistry is the dental specialty concerned with the study and treatment of the dental pulp, and generally diagnose tooth pain and perform root canal treatment and other procedures relating to the interior of the tooth. This article, therefore, aims on being an assistive methodology in endodontics by applying 3D printing in order to reduce the strain involved in the tooth restoration process.


2019 ◽  
Vol 25 (5) ◽  
pp. 857-863
Author(s):  
Fusong Yuan ◽  
Yao Sun ◽  
Lei Zhang ◽  
Yuchun Sun

Purpose The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy. Design/methodology/approach Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated. Findings The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively. Originality/value The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4435
Author(s):  
Kentaro Hata ◽  
Hiroshi Ikeda ◽  
Yuki Nagamatsu ◽  
Chihiro Masaki ◽  
Ryuji Hosokawa ◽  
...  

Poly(methyl methacrylate) (PMMA) is widely used in dental applications. However, PMMA specialized for stereolithography (SLA) additive manufacturing (3D-printing) has not been developed yet. This study aims to develop a novel PMMA-based resin for SLA 3D-printing by mixing methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and PMMA powder in various mixing ratios. The printability and the viscosity of the PMMA-based resins were examined to determine their suitability for 3D-printing. The mechanical properties (flexural strength and Vickers hardness), shear bond strength, degree of conversion, physicochemical properties (water sorption and solubility), and cytotoxicity for L929 cells of the resulting resins were compared with those of three commercial resins: one self-cured resin and two 3D-print resins. EGDMA and PMMA were found to be essential components for SLA 3D-printing. The viscosity increased with PMMA content, while the mechanical properties improved as EGDMA content increased. The shear bond strength tended to decrease as EGDMA increased. Based on these characteristics, the optimal composition was determined to be 30% PMMA, 56% EGDMA, 14% MMA with flexural strength (84.6 ± 7.1 MPa), Vickers hardness (21.6 ± 1.9), and shear bond strength (10.5 ± 1.8 MPa) which were comparable to or higher than those of commercial resins. The resin’s degree of conversion (71.5 ± 0.7%), water sorption (19.7 ± 0.6 μg/mm3), solubility (below detection limit), and cell viability (80.7 ± 6.2% at day 10) were all acceptable for use in an oral environment. The printable PMMA-based resin is a potential candidate material for dental applications.


2021 ◽  
Author(s):  
Yash Gopal Mittal ◽  
Shivam Prajapati ◽  
Pushkar Kamble ◽  
Dmitriy Trushnikov ◽  
Alain Bernard ◽  
...  

Abstract 3D printing is an Additive Manufacturing (AM) process that enables physical realization of a CAD (Computer-Aided Design) model. 3D printing can be classified into several variants; Material Extrusion Additive Manufacturing (MEAM) is the most versatile and widely used. MEAM is a continuous extrusion and selective deposition process commonly used for thermoplastics. Screw Extrusion Additive Manufacturing (SEAM), a sub-domain of MEAM, uses an extruder screw to push the polymer-melt out of the nozzle. Computational Fluid Dynamics (CFD) analysis of a single screw extrusion of thermoplastics is presented in this paper. The effect of various control parameters like screw rotation, wall heat flux/temperature profile, screw geometry, etc., has been studied on the required output parameters like productivity, torque capacity, power requirement, metering efficiency, etc. It is found that the incrementally-variable-pitch screw geometry provides the best metering characteristics. However, every screw design is a compromise between melt temperature, productivity, and power requirements.


MRS Advances ◽  
2017 ◽  
Vol 2 (16) ◽  
pp. 913-920 ◽  
Author(s):  
Reece D. Gately ◽  
Stephen Beirne ◽  
Geoff Latimer ◽  
Matthew Shirlaw ◽  
Buyung Kosasih ◽  
...  

ABSTRACTWe demonstrate that Additive Manufacturing (3D printing) is a viable approach to rapidly prototype personalised fins for surfboards. Surfing is an iconic sport that is extremely popular in coastal regions around the world. We use computer aided design and 3D printing of a wide range of composite materials to print fins for surfboards, e.g. ABS, carbon fibre, fibre glass and amorphous thermoplastic poly(etherimide) resins. The mechanical characteristics of our 3D printed fins were found to be comparable to commercial fins. Computational fluid dynamics was employed to calculate longitudinal (drag) and tangential (turning) forces, which are important for surfboard maneuverability, stability and speed. A commercial tracking system was used to evaluate the performance of 3D printed fins under real-world conditions (i.e. surfing waves). These data showed that the surfing performance of surfboards with 3D printed fins is similar to that of surfboards with commercial fins.


2020 ◽  
pp. 1-3
Author(s):  
Abhishek Bansal ◽  
Navneet kukreja ◽  
Shivangi Trivedi ◽  
Jayant Verma ◽  
Jyoti Bansal ◽  
...  

Abstract: The process of 3 Dimensional (3D) printing is used to create a 3D object with the help of a computer aided design (CAD) model, by successive addition of material layer by layer thus it is also known as additive manufacturing. During 1990’s, the technique of 3D printing was only applied for the manufacture of aesthetic or functional prototypes and was suitably named as rapid prototyping. The following descriptive review presents with an overview about contemporary 3D printing technologies and their use in various specialties of dentistry and largely focusing on the applications of this technology in the endodontics.


2021 ◽  
Vol 23 (1) ◽  
pp. 307-338
Author(s):  
Luis Fernando Velásquez-García ◽  
Yosef Kornbluth

Additive manufacturing's attributes include print customization, low per-unit cost for small- to mid-batch production, seamless interfacing with mainstream medical 3D imaging techniques, and feasibility to create free-form objects in materials that are biocompatible and biodegradable. Consequently, additive manufacturing is apposite for a wide range of biomedical applications including custom biocompatible implants that mimic the mechanical response of bone, biodegradable scaffolds with engineered degradation rate, medical surgical tools, and biomedical instrumentation. This review surveys the materials, 3D printing methods and technologies, and biomedical applications of metal 3D printing, providing a historical perspective while focusing on the state of the art. It then identifies a number of exciting directions of future growth: ( a) the improvement of mainstream additive manufacturing methods and associated feedstock; ( b) the exploration of mature, less utilized metal 3D printing techniques; ( c) the optimization of additively manufactured load-bearing structures via artificial intelligence; and ( d) the creation of monolithic, multimaterial, finely featured, multifunctional implants.


2021 ◽  
Author(s):  
Shuang Han ◽  
Hui Wang ◽  
Jue Chen ◽  
Jihong Zhao ◽  
Haoyan Zhong

Abstract Background:To examine the effectiveness of computer-aided design combined with the 3D printing technology in autotransplantation of teeth by using retrospective analysis.Methods: We divided 41 tooth autotransplantation cases which assisted by 3D-printed donor models and surgical guides into two groups in accordance with whether the donor tooth could be placed successfully after the preparation of alveolar socket guided by the model tooth. Then, we compared and analyzed the preparation time of alveolar socket, extra-alveolar time, and number of positioning trials of the donor tooth between the two groups. We also included a comparison of the in vitro time of the donor tooth with that of 15 min. The incidence of complications was included in the prognostic evaluation.Results: The mean preparation time of the alveolar socket, mean extra-alveolar time of donor tooth, and mean number of positioning trials with donor tooth of 41 cases were 12.73 ± 6.18 min, 5.56 ± 3.11 min, and 2.61 ± 1.00, respectively. The group wherein the donor tooth cannot be placed successfully (15.57 ± 6.14 min, 7.29 ± 2.57 min) spent more preparation time of alveolar socket and extra-alveolar time than the group wherein the donor tooth can be placed successfully (9.75 ± 4.73 min, 3.75 ± 2.57 min). The number of positioning trials with the donor tooth of the group wherein the donor tooth cannot be placed successfully (3.19±0.75) was higher than that of the other group (2.00 ± 0.86). Conclusions: Compared with the traditional tooth autotransplantation, the introduction of computer-aided design combined with 3D printing of the model tooth and surgical guides evidently shortens the preparation time of the alveolar socket and the extra-alveolar time of the donor tooth and reduces the number of positioning trials with the donor tooth regardless of the shape deviation between the model and actual teeth.


Sign in / Sign up

Export Citation Format

Share Document