scholarly journals Resveratrol Prevents Cataract Formation by Inhibiting Pro-inflammatory Mediator-induced Dysregulation of Lens Calcium

2020 ◽  
Vol 2 (3) ◽  
pp. 14-35
Author(s):  
R. Manikandan

The effect of resveratrol, a free radical scavenger, during cataract development was evaluated in the Wistar rat pup model. This study investigated the possible free radical scavenging potential of resveratrol at 40 mg/ kg body wt dose in selenite-induced cataract in rat pups. Intraperitoneal injection of sodium selenite (15 µm mol/ kg body wt) in 8 to 10 day old rat pups lead to severe oxidative stress in the tissues evidenced by decreased antioxidants and increased lipid peroxidase, nitric oxide, superoxide anion, hydroxyl radical generation, inducible nitric oxide synthase (iNOS) as well as nuclear factor kappa B (NF-kB) expression levels that probably led to cataract formation. Selenite exposure also caused an increase in total calcium in the eye lens and significantly inhibited the activity of Ca2+ ATPase but not Na+/ K+ ATPase or Mg2+ ATPase. However, both pre- and co-treatments with resveratrol, but not post-treatment, led to an increase in antioxidant levels with a concomitant reduction in oxidative stress and also rescued the selenite-mediated increase in lens Ca2+ and inhibition of Ca2+ ATPase activity in the eye lens. The results of this study demonstrate antioxidants decrease and increase in free radical generation triggered by selenite causes the inactivation of lens Ca2+ ATPase leading to a rise in intracellular Ca2+ level. Resveratol treatment was able to prevent selenite-induced oxidative stress and in turn the inhibition of lens opacification. Thus, resveratrol has the potential to function as an anti-cataractogenic agent, possibly by preventing free radical-mediated accumulation of Ca2+ in the eye lens.

2005 ◽  
Vol 289 (6) ◽  
pp. H2514-H2518 ◽  
Author(s):  
Masaomi Nimata ◽  
Taka-aki Okabe ◽  
Miki Hattori ◽  
Zuyi Yuan ◽  
Keisuke Shioji ◽  
...  

In this study, we tested the hypothesis that MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one; edaravone), a novel free radical scavenger, protects against acute experimental autoimmune myocarditis (EAM) in rats by the radical scavenging action associated with the suppression of cytotoxic myocardial injury. Recent evidence suggests that oxidative stress may play a role in myocarditis. We administered MCI-186 intraperitoneally at 1, 3, and 10 mg·kg−1·day−1 to rats with EAM for 3 wk. The results were compared with untreated rats with EAM. MCI-186 treatment did not affect hemodynamics. MCI-186 treatment (3 and 10 mg·kg−1·day−1) reduced the severity of myocarditis as assessed by comparing the heart-to-body weight ratio and pathological scores. Myocardial interleukin-1β (IL-1β)-positive cells and myocardial oxidative stress overload with DNA damage in rats with EAM given MCI-186 treatment were significantly less compared with those of the untreated rats with EAM. In addition, MCI-186 treatment decreased not only the myocardial protein carbonyl contents but also the myocardial thiobarbituric acid reactive substance products in rats with EAM. The formation of hydroxyl radicals in MCI-186-treated heart homogenates was decreased compared with untreated heart homogenates. Furthermore, cytotoxic activities of lymphocytes of rats with EAM treated with MCI-186 were significantly lower compared with those of the untreated rats with EAM. Hydroxyl radicals may be involved in the development of myocarditis. MCI-186 protects against acute EAM in rats associated with scavenging hydroxyl free radicals, resulting in the suppression of autoimmune-mediated myocardial damage associated with reduced oxidative stress state.


2002 ◽  
Vol 88 (6) ◽  
pp. 2909-2918 ◽  
Author(s):  
Richard Kovács ◽  
Sebastian Schuchmann ◽  
Siegrun Gabriel ◽  
Oliver Kann ◽  
Julianna Kardos ◽  
...  

Generation of free radicals may have a key role in the nerve cell damage induced by prolonged or frequently recurring convulsions (status epilepticus). Mitochondrial function may also be altered due to production of free radicals during seizures. We therefore studied changes in field potentials (fp) together with measurements of extracellular, intracellular, and intramitochondrial calcium concentration ([Ca2+]e, [Ca2+]i, and [Ca2+]m, respectively), mitochondrial membrane potential (ΔΨ), NAD(P)H auto-fluorescence, and dihydroethidium (HEt) fluorescence in hippocampal slice cultures by means of simultaneous electrophysiological and microfluorimetric measurements. As reported previously, each seizure-like event (SLE) resulted in mitochondrial depolarization associated with a delayed rise in oxidation of HEt to ethidum, presumably indicating ROS production. We show here that repeated SLEs led to a decline in intracellular and intramitochondrial Ca2+ signals despite unaltered Ca2+ influx. Also, mitochondrial depolarization and the NAD(P)H signal became smaller during recurring SLEs. By contrast, the ethidium fluorescence rises remained constant or even increased from SLE to SLE. After about 15 SLEs, activity changed to continuous afterdischarges with steady depolarization of mitochondrial membranes. Staining with a cell death marker, propidium iodide, indicated widespread cell damage after 2 h of recurring SLEs. The free radical scavenger, α-tocopherol, protected the slice cultures against this damage and also reduced the ongoing impairment of NAD(P)H production. These findings suggest involvement of reactive oxygen species (ROS) of mitochondrial origin in the epileptic cell damage and that free radical scavenging may prevent status epilepticus–induced cell loss.


2013 ◽  
Vol 58 (1-2) ◽  
pp. 134-139 ◽  
Author(s):  
Tsutomu Yamashita ◽  
Kumi Sakamoto ◽  
Hiroshi Yamanishi ◽  
Nagao Totani ◽  
Junichiro Yamamoto

Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 477
Author(s):  
Gabriella D’Angelo ◽  
Roberto Chimenz ◽  
Russel J. Reiter ◽  
Eloisa Gitto

Reactive oxygen species have a crucial role in the pathogenesis of perinatal diseases. Exposure to inflammation, infections, or high oxygen concentrations is frequent in preterm infants, who have high free iron levels that enhance toxic radical generation and diminish antioxidant defense. The peculiar susceptibility of newborns to oxidative stress supports the prophylactic use of melatonin in preventing or decreasing oxidative stress-mediated diseases. Melatonin, an effective direct free-radical scavenger, easily diffuses through biological membranes and exerts pleiotropic activity everywhere. Multiple investigations have assessed the effectiveness of melatonin to reduce the “oxygen radical diseases of newborn” including perinatal brain injury, sepsis, chronic lung disease (CLD), and necrotizing enterocolitis (NEC). Further studies are still awaited to test melatonin activity during perinatal period.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tomomi Masuda ◽  
Masamitsu Shimazawa ◽  
Hideaki Hara

Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.


2008 ◽  
Vol 36 (01) ◽  
pp. 197-207 ◽  
Author(s):  
Fang-Yun Sun ◽  
Xiu-Ping Chen ◽  
Jin-Hua Wang ◽  
Hai-Lin Qin ◽  
Su-Rong Yang ◽  
...  

This study was designed to investigate the antioxidant and free radical scavenging capacities of arjunic acid, an aglycone obtained from the fruit of medicine Terminalia Fruit. Liver microsomes, mitochondria, and red blood cells (RBCs) were prepared from Wistar rats. The antioxidant capacity was determined by the inhibitory effect on lipid peroxidation, hydrogen peroxide induced RBCs hemolysis, and RBCs autoxidative hemolysis. The free radical scavenging activity was tested by DPPH method and 2′,7′-dichlorodihydrofluoresc in diacetate (DCFH2-DA) assay. Ascorbic acid was chosen as the positive controls. Results showed that arjunic acid was a strong antioxidant and a free radical scavenger, more potent than ascorbic acid, in microsomes lipid peroxidation, DPPH, hydrogen peroxide induced RBCs hemolysis, and (DCFH2-DA) assay (p < 0.05). However, no significant difference was observed in the RBCs autoxidative hemolysis assay (p > 0.05).


2004 ◽  
Vol 59 (11-12) ◽  
pp. 811-815 ◽  
Author(s):  
Habsah Mohamad ◽  
Faridah Abas ◽  
Dharma Permana ◽  
Nordin H. Lajis ◽  
Abdul Manaf Ali ◽  
...  

The methanol extract of the dried ripe fruits of Alpinia rafflesiana was investigated for its DPPH free radical scavenger constituents. 2′,3′,4′,6′-Tetrahydroxychalcone (7), which has never been isolated from natural sources was found to be most active as a DPPH free radical scavenger with the IC50 value of 55 μᴍ. Other known compounds isolated from this species include 5,6-dehydrokawain (1), flavokawin B (2), 1,7-diphenyl-5-hydroxy-6-hepten-3-one (3), (-)-pinocembrin (4), cardamonin (5) and (-)-pinostrobin (6). The DPPH free radical scavenger compounds were detected using TLC autographic analysis. The percentage inhibition of DPPH free radical scavenging activity was measured on isolates (5-7) using colorimetric analysis.


Sign in / Sign up

Export Citation Format

Share Document