scholarly journals Cell Therapy as an Alternative approach for COVID-19 Infection Consequences: A Non-Systematic Review

2021 ◽  
Vol 2 (3) ◽  
pp. 23-37
Author(s):  
Hoda Elkhenany ◽  
Shilpi Gupta ◽  
Mostafa F. Abdelhai

The current uncontrollable outbreak of novel coronavirus (COVID-19) has unleashed severe global consequences in all aspects of life and society, bringing the whole world to a complete halt and has modeled significant threats to the global economy. The COVID-19 infection manifests with flu-like symptoms such as cough, cold, and fever resulting in acute respiratory distress syndrome (ARDS), lung dysfunction, and other systemic complications in critical patients are creating panic across the globe. However, the licensed vaccine has started to show up; some resulted in side effects that would limit its possibility in some circumstances as allergic personnel, for example. Moreover, the production and approval of new drugs is a very complicated process and takes a long time. On the other hand, stem cells have gone the extra mile and intensively investigated at preclinical and clinical studies in various degenerative diseases, including infectious ones. Stem cells are proposed as a broad-spectrum therapeutic agent, which may suppress the exaggerated immune response and promote endogenous repair by enhancing COVID-19 infected lung microenvironment. Also, stem cells have different application manners, either direct transplantation, exosome transplantation, or drug delivery of specific cytokines or nanoparticles with antiviral property by engineering stem cells. This review discusses and summarizes the possible emerging role of cell-based therapy, especially stem cell therapy, as an alternative promising therapeutic option for the treatment and control of novel COVID-19 and its potential role in tissue rejuvenation after COVID-19 infection.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Da Yeon Lee ◽  
Sung Eun Lee ◽  
Do Hyeon Kwon ◽  
Saraswathy Nithiyanandam ◽  
Mi Ha Lee ◽  
...  

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2854-2862 ◽  
Author(s):  
You Jeong Park ◽  
Kuniyasu Niizuma ◽  
Maxim Mokin ◽  
Mari Dezawa ◽  
Cesar V. Borlongan

Stem cell-based regenerative therapies may rescue the central nervous system following ischemic stroke. Mesenchymal stem cells exhibit promising regenerative capacity in in vitro studies but display little to no incorporation in host tissue after transplantation in in vivo models of stroke. Despite these limitations, clinical trials using mesenchymal stem cells have produced some functional benefits ascribed to their ability to modulate the host’s inflammatory response coupled with their robust safety profile. Regeneration of ischemic brain tissue using stem cells, however, remains elusive in humans. Multilineage-differentiating stress-enduring (Muse) cells are a distinct subset of mesenchymal stem cells found sporadically in connective tissue of nearly every organ. Since their discovery in 2010, these endogenous reparative stem cells have been investigated for their therapeutic potential against a variety of diseases, including acute myocardial infarction, stroke, chronic kidney disease, and liver disease. Preclinical studies have exemplified Muse cells’ unique ability mobilize, differentiate, and engraft into damaged host tissue. Intravenously transplanted Muse cells in mouse lacunar stroke models afforded functional recovery and long-term engraftment into the host neural network. This mini-review article highlights these biological properties that make Muse cells an exceptional candidate donor source for cell therapy in ischemic stroke. Elucidating the mechanism behind the therapeutic potential of Muse cells will undoubtedly help optimize stem cell therapy for stroke and advance the field of regenerative medicine.


2020 ◽  
Vol 10 (14) ◽  
pp. 4852 ◽  
Author(s):  
Shima Masoudi Asil ◽  
Jyoti Ahlawat ◽  
Gileydis Guillama Barroso ◽  
Mahesh Narayan

In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.


2021 ◽  
Vol 19 ◽  
Author(s):  
Maria Ejma ◽  
Natalia Madetko ◽  
Anna Brzecka ◽  
Piotr Alster ◽  
Sławomir Budrewicz ◽  
...  

Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell- based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.


StemJournal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Dinesh Boopalan ◽  
Ramanan Pandian ◽  
Gokul Kesavan

Stem cells offer a promising therapeutic strategy to not only treat several incurable diseases but also regenerate damaged tissues. The current global boom in the field of stem cell and regenerative therapies had led to India becoming a global hotspot for stem cell-based therapies. In this review, we assess the current status of stem cell therapy trials in India and show that the bone marrow-derived stem cells, like mesenchymal stem/stromal cells (MSCs), are predominantly used. Phase 1 and 2 clinical trials have also used MSCs to alleviate symptoms of severe novel coronavirus infections. Recent breakthroughs in gene editing technologies, combined with stem cell therapy, can be effectively harnessed to devise large-scale and affordable treatments for haematological diseases that are highly prevalent in India, like beta-thalassemia and sickle cell diseases. Innovations in stem cell therapy in India can make treatments more affordable to address the needs of in-country patients.


2021 ◽  
Vol 10 (3) ◽  
pp. 72-78
Author(s):  
P. M. Docshin ◽  
A. Bairqdar ◽  
A. B. Malashicheva

Modern methods of treating heart failure are similar to the palliative care, since they mostly relieve the symptoms of the disease. The discovery of resident cardiac stem cells gave impetus to the development of “second generation” cell therapy, which quickly moved from animal research to clinical trials with critically ill patients. Many cardiac side population cells have been identified to have stem cells characteristics and some additional individual characteristics, both in vitro and in vivo. The results of clinical studies demonstrated that the stem cell treatment is safe, however, this type of cell-based therapy did not restore cardiac function. Its effects were limited to mildly improving left ventricular systolic pressure and reducing the scar area. Despite that, the promising nature of these therapeutic approaches for heart diseases have contributed to the development of next-generation cell therapy.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
Anna Caretti ◽  
Valeria Peli ◽  
Michela Colombo ◽  
Aida Zulueta

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic stem cells residing in many tissues, including the lung. MSCs have long been regarded as a promising tool for cell-based therapy because of their ability to replace damaged tissue by differentiating into the resident cell and repopulating the injured area. Their ability to release soluble factors and extracellular vesicles has emerged as crucial in the resolution of inflammation and injury. There is a growing literature on the use of MSCs and MSC secretome to hamper inflammation in different lung pathologies, including: asthma, pneumonia, acute lung injury (ALI), pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). However, their potential therapeutic role in the context of Cystic Fibrosis (CF) lung inflammation is still not fully characterized. CF morbidity and mortality are mainly due to progressive lung dysfunction. Lung inflammation is a chronic and unresolved condition that triggers progressive tissue damage. Thus, it becomes even more important to develop innovative immunomodulatory therapies aside from classic anti-inflammatory agents. Here, we address the main features of CF and the implications in lung inflammation. We then review how MSCs and MSC secretome participate in attenuating inflammation in pulmonary pathologies, emphasizing the significant potential of MSCs as new therapeutic approach in CF.


2021 ◽  
Vol 14 (4) ◽  
pp. 321
Author(s):  
Jung Hak Kim ◽  
So Young Kim ◽  
Bokyung Kim ◽  
Sang Rae Lee ◽  
Sang Hoon Cha ◽  
...  

Stroke is a serious, adverse neurological event and the third leading cause of death and disability worldwide. Most strokes are caused by a block in cerebral blood flow, resulting in neurological deficits through the death of brain tissue. Recombinant tissue plasminogen activator (rt-PA) is currently the only immediate treatment medication for stroke. The goal of rt-PA administration is to reduce the thrombus and/or embolism via thrombolysis; however, the administration of rt-PA must occur within a very short therapeutic timeframe (3 h to 6 h) after symptom onset. Components of the pathological mechanisms involved in ischemic stroke can be used as potential biomarkers in current treatment. However, none are currently under investigation in clinical trials; thus, further studies investigating biomarkers are needed. After ischemic stroke, microglial cells can be activated and release inflammatory cytokines. These cytokines lead to severe neurotoxicity via the overactivation of microglia in prolonged and lasting insults such as stroke. Thus, the balanced regulation of microglial activation may be necessary for therapy. Stem cell therapy is a promising clinical treatment strategy for ischemic stroke. Stem cells can increase the functional recovery of damaged tissue after post-ischemic stroke through various mechanisms including the secretion of neurotrophic factors, immunomodulation, the stimulation of endogenous neurogenesis, and neovascularization. To investigate the use of stem cell therapy for neurological diseases in preclinical studies, however, it is important to develop imaging technologies that are able to evaluate disease progression and to “chase” (i.e., track or monitor) transplanted stem cells in recipients. Imaging technology development is rapidly advancing, and more sensitive techniques, such as the invasive and non-invasive multimodal techniques, are under development. Here, we summarize the potential risk factors and biomarker treatment strategies, stem cell-based therapy and emerging multimodal imaging techniques in the context of stroke. This current review provides a conceptual framework for considering the therapeutic targets and directions for the treatment of brain dysfunctions, with a particular focus on ischemic stroke.


2020 ◽  
Vol 19 (6) ◽  
pp. 2733
Author(s):  
L. Yu. Grivtsova ◽  
O. E. Popovkina ◽  
N. N. Dukhova ◽  
O. A. Politiko ◽  
V. V. Yuzhakov ◽  
...  

Cardiovascular diseases, along with cancer, are the leading causes of death worldwide. Although modern pharmacological treatment of various cardiomyopathies can slow the development of myocardial dysfunction, they have limited effectiveness in patients with end-stage disease. Many researchers believe that heart transplantation is the only radical treatment in this case. However, the lack of donors and the high operation cost require careful selection of surgical candidates. With the introduction of molecular and cell biology into medical practice, today, stem cell therapy can become an alternative method of nonsurgical restoration of myocardial functions. The most studied and attractive is the use of mesenchymal stem cells (MSCs). MSCs differ from hematopoietic stem cells used as support for hematopoiesis in high-dose chemotherapy by the following features: pronounced trophic effect, immune tolerance, the ability to suppress alloreactivity and autoimmune disorders. An important stage in the implementation of cell therapy is the creation of a cell biobank of MSCs. In A.F.Tsyb Medical Radiological Research Center, this work has been carried out since1984. Asignificant number of experimental studies have been carried out, confirming the possibility of clinical implementation of this approach. A method for obtaining stable cultures of MSCs and cardiomyoblasts from bone marrow cells was developed and approvals were obtained. Experimental studies of cell therapy are also being conducted to overcome anthracycline-induced cardiotoxicity in cancer patients.This article is devoted to practical application of MSC-based therapy, in particular, in cancer patients with cardiotoxicity, as well as to the issues of creating a cell biobank for treatment with MSCs.


Sign in / Sign up

Export Citation Format

Share Document