scholarly journals Use of Grasses and Mixtures of Grasses for Energy Purposes

10.14311/1534 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
David Andert ◽  
Jan Frydrych ◽  
Ilona Gerndtová

As levels of agricultural productivity increase, there is also an increase in land area not utilized for food production. This area can be used for growing energy crops, including grasses. When land is set aside for grassing, or when the potential of perennial grasses is not utilized due to reductions in cattle herds, there is also an increased amount of grass that can be utilized for energy purposes. Experiments were carried out on the principle of single-stage anaerobic digestion within the mezophyle range. During the experiments, we measured the cumulative production of biogas and its composition. The processed grass was disintegrated by pressing and cutting. This adaptation of the material resulted in increased biogas production. The optimum proportion of grass dry matter is from 35 to 50 % in the total d.m. The results of the experiments proved the suitability of grass phytomass as a material for biogas production.

2015 ◽  
Vol 46 (3) ◽  
pp. 100 ◽  
Author(s):  
Davide Boscaro ◽  
Andrea Pezzuolo ◽  
Stefano Grigolato ◽  
Raffaele Cavalli ◽  
Francesco Marinello ◽  
...  

The increasing demand of vegetal biomass for biogas production is causing competition with food production. To reduce this problem and to provide new opportunities it is necessary to take into consideration different kinds of vegetable biomass that are more sustainable. Grass from the maintenance of non-cultivated areas such as riverbanks has not yet been fully studied as a potential biomass for biogas production. Although grass has lower methane potential, it could be interesting because it does not compete with food production. However, there is a lack of appropriate technologies and working system adapted to these areas. In this paper, different systems that could be available for the mowing and harvesting of grass along riverbanks have been preliminarily assessed through the evaluation of the field capacity, labour requirement, economic and energy aspects. The splitting of the cutting and harvesting phases into operations with different machinery seems to be the best system for handling this biomass. However, these solutions have to take into consideration the presence of obstacles or accessibility problems in the harvesting areas that could limit the operational feasibility and subsequent correct sizing.


2014 ◽  
Vol 955-959 ◽  
pp. 2692-2696 ◽  
Author(s):  
Li Fan Liu ◽  
Yong Wei Liao ◽  
Jie Liang ◽  
Shu Ting Lai

The characteristics such as pH, dry matter, carbon concentration, the total solid and volatile solid of kitchen wastes produced by a canteen in Guangzhou were measured. The anaerobic digestion process performances were evaluated through the examination of operational conditions like activated sludge inoculation, temperature on SS, biogas production, COD concentration and pH in the reactor. When the proportion between kitchen wastes to seed sludge inoculation was 1:1, the biogas production reached the peak at 45 °C. The kitchen waste pH decreased at the first four days then increased adversely after 4 days digestion, but COD concentration showed the opposite variation.


2000 ◽  
Vol 41 (3) ◽  
pp. 283-290 ◽  
Author(s):  
L. De Bere

In order to make a correct assessment of the state-of-the-art of the technology, a study was made on the development of digestion capacity for solid waste in Europe. The study was limited to plants in operation or under construction that were treating at least 10% organic solid waste coming from market waste or municipal solid waste. A total treatment capacity for solid waste organics, excluding the tonnage used for sewage sludge and manures, evolved from 122,000 ton per year in 1990 to 1,037,000 ton available or under construction by the year 2000 in 53 plants across Europe, an increase by 750%. Both mesophilic and thermophilic technologies have been proven, with about 62% of capacity being operated at mesophilic temperatures. Wet and dry digestion are almost evenly split, while a clear choice was made for one-phase systems instead of two-phase systems, which represent only 10.6% of capacity. The capacity provided by co-digestion systems is limited, while there is a rising interest in digestion of mixed household waste. The reliable performance has been demonstrated for all types of anaerobic digestion systems. On the basis of the Dranco technology, a single-phase thermophilic dry digestion process, performances were reached similar to high-rate wastewater digestion. An annual average loading rate of 18.5 kg COD/m3.day, resulting in a biogas production of 9.2 m3/m3reactor.day was obtained at a full-scale plant. The plant operated at a retention time of 15.3 days. Feedstocks range from clean organic wastes (31% dry matter) to heavily polluted grey waste organics (57% dry matter). Average dry matter concentrations of the digested residue of 41% were obtained.


2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.


2019 ◽  
pp. 54-61 ◽  
Author(s):  
Younoussa Moussa Baldé ◽  
Cellou Kanté ◽  
Sette Diop ◽  
Sihem Tebbani

The present work is an account of an ongoing work on biogas production from animal wastes at LEREA (Laboratoire d’enseignement et de recherche en énergétique appliquée) in Mamou, Guinea. The work consists of biogas production from anaerobic digestion and co-digestion of cow dung and droppings. We focus in this report on the determination of the physico-chemical characteristics of the experimental setup. We have carried out three experiments of anaerobic digestion each one lasting 45 days at mesophilic temperature (temperature was maintained in the range 27°C - 28°C). Biogas - 28.4 liters have been obtained from droppings, 22.6 liters from cow dung and 38.7 liters from co-digestion of the previous two wastes. The following physico-chemical characteristcs were observed for cow dung: humidity 43%, dry matter 20.83%, organic matter 57%, density 625kg/m3, carbon content 31%, nitrogen content 1.46%, nitrogen-carbon ratio 21/30. For droppings we measured: humidity 35%, dry matter 65%, organic matter 62%, density 250 kg/m3, carbon content 36%, nitrogen level 1.83%. This characterization was carried out on a sample of 3 g of each type of substrate. These results agree with those of the literature that we were able to compare with. Keywords: anaerobic digestion; anaerobic co-digestion; physico-chimical characterization; cow dung weste; droppings weste; methanation; animal waste


Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


Sign in / Sign up

Export Citation Format

Share Document