scholarly journals The Danger of Toxic Substances

10.14311/346 ◽  
2002 ◽  
Vol 42 (3) ◽  
Author(s):  
M. V. Jokl

Toxic (harmful) gases enter building interiors partly from outdoors (sulfur oxides, nitrogen oxides, carbon monoxide, ozone, smog and acid rains), partly originate indoors - as a result of human activity (carbon monoxide, tobacco smoke, nitrogen oxides, ozone, hydrocarbons) and also emanate from building materials (formaldehyde, volatile organic compounds). The human organism is most often exposed to cigarette smoke (especially nonsmokers are endangered, as cigarette smoke devastes the pulmonary and cardiovasculary system) and to smog entering from outdoors, paradoxically during sunny weather. Preventing toxic production is the most effective measure, e.g., by coaxing to coax smokers out of "civilized" areas, by using energy rationally (i.e., conserving energy), to turn to pure fuels and to increase energy production by non-combustion technologies. Besides ventilation and air filtration, the toxic gases can be removed to a remarkable extent by plants (by which decay the substances into nontoxic gases), and by air ionization. Review article.

10.14311/324 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
M. V. Jokl

The odor microclimate is formed by gaseous airborne components perceived either as an unpleasant smell or as a pleasant smell. Smells enter the building interior partly from outdoors (exhaust fumes - flower fragrance) and partly from indoors (building materials, smoking cigarettes - cosmetics, dishes). They affect the human organism through the olfactory center which is connected to the part of brain that is responsible for controlling people's emotions and sexual feelings: smells therefore participate to a high level in mood formation. Sweet smells have a positive impact on human feelings and on human performance. Criteria for odor microclimate appraisal are presented together with ways of improving the odor microclimate (by stopping odors from spreading within a building, ventilation, air filtration, odor removal by plants, deodorization, etc.), including so-called AIR DESIGN.


Author(s):  
Amirreza Talaiekhozani ◽  
Ali Mohammad Amani

Introduction: Thousandths dangerous chemicals are found in cigarette smoke. Each day millions cigarettes are consumed and its smoke is emitted in the atmosphere. Although several studies have been carried out on ciga-rette smoke, there is no reliable emission factor for pollutants emitted from burning cigarette. The aim of this study is to prepare four emission factors to estimate amount of carbon dioxide, carbon monoxide, total hydrocarbons and nitrogen oxides per each cigarette.   Materials and methods: In this study a set of experiments was designed to achieve this aim. Different brands of cigarettes were prepared and then they was burned by a vacuum pump. Their cigarettes smoke was analyzed by a gas analyzer to find the concentration of carbon dioxide, carbon monoxide, total hydrocarbons and nitrogen oxides in the cigarettes smoke. Next, the average emission factor for complete burning of a cigarette was calculated.   Results: High amount of pollutants could be found in cigarette smoke. The results revealed that 0.01 mg of hydrocarbons, 0.13 mg of carbon monoxide, 0.5 mg of carbon dioxide and 0.01 mg of nitrogen oxides are emitted during complete burning of each cigarette.   Conclusion: If the number of consumed cigarettes was available, these emis-sion factors can be used to understand the share of cigarette smoke in air pol-lution of large cities to understand whether cigarette consumption is effective on air pollution.


Earth ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 667-673
Author(s):  
Amirreza Talaiekhozani ◽  
Majid Lotfi Ghahroud ◽  
Shahabaldin Rezania

Nowadays, electricity consumption has increased worldwide due to the activity of cryptocurrency miners. Much of Iran’s electricity is generated by fossil fuel power plants. So, generating more electricity means producing more air pollutants in Iran. There is not sufficient information about the effects of cryptocurrency mining on Iran’s air pollution. This study aims to estimate the amount of carbon monoxide (CO), sulfur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOCs), and particulate matter (PM) emitted by Iran’s power plants when they generate extra electricity for cryptocurrency miners. In this study, we firstly estimated the amount of fuel used for the electricity needed for cryptocurrency miners. Then, the amounts of emitted NOx, CO, VOCs, SOx, and total PM for generation of such electricity were estimated via the guidelines of the European Environment Agency for emission inventory estimation. The results showed that an on average of 3530, 1547, 103, 11, and 35 tons of NOx, CO, VOCs, SOx, and total PM, respectively, have been emitted into the atmosphere in Iran annually.


2021 ◽  
Vol 11 (19) ◽  
pp. 9084
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The article presents the results of studies on the influence of the thermal state of vehicle combustion engines on pollutant emissions. This influence was analyzed based on data from Poland’s inventory of pollutant emissions for the years 1990–2017. The results show that during engine warm-up, carbon monoxide emission constitutes the largest share (up to 50%) in the national annual total emission. Volatile organic compounds are next in the ranking, whereas the share of nitrogen oxides is the lowest (less than 5%). Under the model traffic conditions, close to those in Poland’s cities in winter, simulation tests regarding additional pollutant emissions from passenger cars during engine warm-up were also carried out. As a result of the cold-start emissive behavior of internal combustion engines, emissions of carbon monoxide and volatile organic compounds showed a considerably greater impact on national pollutant emission, as compared to carbon dioxide, nitrogen oxides and particulate matter. This is particularly evident for the results of the inventory of pollutant emissions from road transport.


2019 ◽  
Vol 178 (3) ◽  
pp. 150-154 ◽  
Author(s):  
Katarzyna BEBKIEWICZ ◽  
Zdzisław CHŁOPEK ◽  
Jakub LASOCKI ◽  
Krystian SZCZEPAŃSKI ◽  
Magdalena ZIMAKOWSKA-LASKOWSKA

This article presents results of the inventory of pollutant emission from motor vehicles in Poland. To determine emission from motor vehicles in Poland COPERT 5 software was used for the first time. In addition, a comparison of the national emission from motor vehi-cles in 2016 and in 2015 was included. Pollutants harmful to health were considered primarily: carbon monoxide, organic compounds, nitrogen oxides and particulate matter. Emission of substances contributing to the intensification of the greenhouse effect were also examined: carbon dioxide, ammonia and nitrous oxide. It was found that the relative increase in volume of emission of carbon monoxide and non-methane volatile organic compounds is less than 10%, and nitrogen oxides and particulate matter less than 15%. The relative increase in carbon dioxide emission is approximately 14%, which corresponds to a relative increase in fuel consumption. The relative increase of volume of heavy metal emission is similar. The assessment of the energy emission factor (emission of pollution related to energy equal to used fuel) proves that – amongst pollutants harmful to health – for carbon monoxide and non-methane volatile organic compounds there is a relative reduction by approximately 5% in 2016, and for nitrogen oxides and particulate matter – increase by approximately (3–4)%.


2015 ◽  
Vol 15 (17) ◽  
pp. 23507-23541 ◽  
Author(s):  
F. Zhang ◽  
Y. Chen ◽  
C. Tian ◽  
J. Li ◽  
G. Zhang ◽  
...  

Abstract. Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 250
Author(s):  
Chuloh Jung ◽  
Jihad Awad

Due to unprecedented urbanization, UAE had built many new residential projects with poor choices of material and ventilation. This social phenomenon is leading UAE to Sick Building Syndrome (SBS) faster than any other countries. The Dubai Municipality regulates the indoor air quality with strict stipulation, but the detailed regulations are still insufficient. The objective of this paper is to measure the indoor air quality of new residential projects in Dubai to suggest the improvement of the regulations for indoor air quality. As a methodology, a field survey was conducted to investigate the status of indoor air pollution in residential buildings. Based on the field survey data, lab experiments for building materials were conducted and a computer simulation on radon gas was conducted. The result had shown that radon gas was mainly detected in new townhouses and labor camp houses, and its concentration was found to exceed the standard. Volatile organic solvents (VOCs) and formaldehyde (CH2O) were mainly detected in showhouses and new townhouses, and the concentration distribution was about 10 times higher than that of outdoors. It was proven that emission concentration of radon gas from various building materials were detected, and the order was red clay, gypsum board, and concrete. Volatile organic solvents (VOCs) are mainly detected in oil paints and PVC floor and the radiation amount of all pollutants increased with temperature increase. In computer simulation, it was found that a new townhouse needs a grace period from 20 days to 6 months to lower the radon gas concentration by 2 pCi/L. This study will serve as a basic data to establish more detailed regulation for the building materials and improve the IAQ standards in Dubai.


2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document