scholarly journals CHARACTERIZATION OF CEMENT-BASED COMPOSITE EXPOSED TO HIGH TEMPERATURES VIA ULTRASONIC PULSE METHOD

2018 ◽  
Vol 15 ◽  
pp. 99-103 ◽  
Author(s):  
Iva Rozsypalová ◽  
Michal Vyhlídal ◽  
Richard Dvořák ◽  
Tomáš Majda ◽  
Libor Topolář ◽  
...  

In this paper, the attention is paid to the investigation of the influence of high temperature acting on specimens made from specially designed cement-based composite. The experimental programme was carried out on six sets of beam specimens with the dimensions of 20 × 40 × 200 mm. The specimens were loaded to a pre-set temperature of 100, 200, 400, 600, 800 and 1000 °C and then the temperature was kept for 60 minutes. When the temperature loading had been done, the specimens were left to cool down to the ambient temperature. After that, the ultrasonic pulse method was used to determine the degree of damage of temperature loaded specimens. The measured data obtained by this non-destructive method are in high correlation with values of informative compressive strength of the composite obtained after the temperature loading of specimens.

2013 ◽  
Vol 284-287 ◽  
pp. 1315-1319 ◽  
Author(s):  
Jiří Brožovský ◽  
Lenka Bodnárová ◽  
Rudolf Hela ◽  
Rostislav Drochytka ◽  
Vlastimil Hela

Ultrasonic pulse method is a non-destructive testing method used for testing materials. For concrete, it is used mostly for determination of dynamic elasticity modulus, compressive strength, homogeneity, to determine depth of cracks or as a supportive method for testing frost resistance. Applicability of using ultrasonic pulse method for evaluation of degradation of concrete exposed to high temperature was proved. This method is unambiguously utilizable for rationalization of experimental work focused on optimization of composition of concrete resistant to high temperatures. Ultrasonic pulse method can be also used for mapping the degree of degradation of concrete elements and structures, which can be measured by means of direct sounding. Appropriateness of the use of ultrasonic pulse method for evaluation of degradation of concrete exposed to high temperature was proved. This method is unambiguously applicable for rationalization of experimental work focused on optimization of composition of concrete resistant to high temperatures. Ultrasonic pulse method can be also used for mapping degree of degradation of concrete elements and structures, which can be measured by means of direct sounding.


Alloy Digest ◽  
1964 ◽  
Vol 13 (7) ◽  

Abstract Kentanium K138-A is a high temperature titanium carbide that greatly widens the scope of the engineering design where conditions of intermittent or continuous high temperatures in oxidizing atmospheres are combined with abrasion, and compressive or tensile loads. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness, creep, and fatigue. It also includes information on machining and joining. Filing Code: Ti-40. Producer or source: Kennametal Inc..


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4095
Author(s):  
Qing Chen ◽  
Zhiyuan Zhu ◽  
Rui Ma ◽  
Zhengwu Jiang ◽  
Yao Zhang ◽  
...  

In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2018 ◽  
Vol 9 (3) ◽  
pp. 203-221 ◽  
Author(s):  
Muhammad Masood Rafi ◽  
Abdul Basit Dahar ◽  
Tariq Aziz

Purpose The purpose of this paper is to present the results of experimental testing of steel rebars at elevated temperatures. Three types of bars available in the local market in Pakistan were used. These data are not available in Pakistan. Design/methodology/approach Three types of bars were used, which included cold-twisted ribbed (CTR), hot-rolled deformed (HRD) and thermo-mechanically treated (TMT) bars. The diameter of the bar of each type was 16 mm. The bars were heated in an electrical furnace at temperatures which were varied from 100°C to 900°C in increment of 100°C. Bars of each type were also tested at ambient temperature as control specimens. The change of strength, strain and modulus of elasticity of the bars at high temperatures were determined. Findings The mechanical properties of the bars were nearly unaffected by the temperatures up to 200°C. CTR bars did not show yield plateau and strain hardening both at ambient and high temperatures. The high temperature yield strength and elastic modulus for all the three types of bars were similar at all temperatures. The yield plateau of both the HRD and TMT bars disappeared at temperatures greater than 300°C. The ultimate strength at high temperature of the HRD and TMT bars was also similar. The behaviours of the HRD and TMT bars changed to brittle beyond 400°C as compared to their behaviours at ambient temperature. The CTR bars exhibited ductile characteristics at failure at all the exposure temperatures relative to their behaviour at ambient temperature. Research limitations/implications The parameters of the paper included the rebar type and heating temperature and the effects of temperature on strength and stiffness properties of the steel bars. Practical implications Building fire incidents have increased in Pakistan. As reinforced concrete (RC) buildings exist in the country in significant numbers, the data related to elevated temperature properties of steel is required. These data are not available in Pakistan presently. The presented paper aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members. Originality/value The presented paper is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of steel reinforcing bars available in Pakistan.


2009 ◽  
Vol 423 ◽  
pp. 61-66 ◽  
Author(s):  
S. de Bernardi-Martín ◽  
E. Zapata-Solvas ◽  
D. Gómez-García ◽  
Arturo Domínguez-Rodríguez ◽  
F.J. Guzmán-Vázquez ◽  
...  

Ceria-zirconia ceramic alloys with the following molar composition: 0.12CeO2-0.88ZrO2 have been sintered by high-temperature annealing. Monolithic specimens haven been crept in compression at high temperatures. Creep experiments have been rationalized to an empirical constitutive equation which is consistent with a classical Ashby-Verrall creep regime. This result has been assessed through microstructural characterization of as-received and post-mortem specimens. A pure Ashby-Verrall creep is contrary to the conventional mechanism controlling creep in other zirconia alloys. A discussion on the explanation for such mechanism is outlined.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 416
Author(s):  
Yunfeng Qian ◽  
Dingyi Yang ◽  
Yanghao Xia ◽  
Han Gao ◽  
Zhiming Ma

Ultra-high performance concrete (UHPC) has a high self-healing capacity and is prone to bursting after exposure to high temperatures due to its characteristics. This work evaluates the damage and improvement of UHPC with coarse aggregates through mechanical properties (compressive strength and ultrasonic pulse velocity), transport properties (water absorption and a chloride diffusion test), and micro-properties such as X-ray diffraction (XRD), Mercury intrusion porosimetry (MIP), and Scanning electronic microscopy (SEM). The result demonstrates that polypropylene (PP) fibers are more suitable for high temperature tests than polyacrylonitrile (PAN) fibers. The result shows that 400 °C is the critical temperature point. With the increase in temperature, the hydration becomes significant, and the internal material phase changes accordingly. Although the total pore volume increased, the percentage of various types of pores was optimized within 400 °C. The mass loss gradually increased and the ultrasonic pulse velocity gradually decreased. While the compressive strength first increased and then decreased, and the increase occurred within 25–400 °C. As for the transport properties, the chloride migration coefficient and capillary absorption coefficient both increased dramatically due to the higher sensitivity to temperature changes. The results of the property improvement test showed that at temperatures above 800 °C, the compressive strength recovered by more than 65% and the ultrasonic pulse velocity recovered by more than 75%. In terms of transport properties, compared to the results before self-healing, the chloride migration coefficient decreased by up to 59%, compared with 89% for the capillary absorption coefficient, after self-healing at 800 °C. With respect to the enhancement effect after exposure to high temperatures, the environment of a 5% Na2SO4 solution was not as good as the clean water environment. The corresponding changes in microstructure during the high temperatures and the self-healing process can explain the change in the pattern of macroscopic properties more precisely.


Sign in / Sign up

Export Citation Format

Share Document