scholarly journals VALIDATION OF LINKED SIMULATION FOR FIRE-EXPOSED CONCRETE STRUCTURES

2018 ◽  
Vol 15 ◽  
pp. 120-125
Author(s):  
Stanislav Šulc ◽  
Vít Šmilauer ◽  
František Wald

This article presents linked computational approach for fire simulation and its effects on structure using adiabatic surface temperature. The simulation solves a weakly-linked problem, consisting of computational fluid dynamics (CFD), heat transport and mechanical model. The temperature field from the CFD creates Cauchy and radiative boundary conditions for the thermal model. The temperature field from an element is passed further to the mechanical model, which induces thermal strain and modifies material parameters. This article also brings a validation of the linked simulation, based on experiment with a concrete block exposed to fire in a furnace. The material model uses standard material properties given in Eurocode 2 - EN 1992-1-2.

2017 ◽  
Vol 13 ◽  
pp. 121
Author(s):  
Stanislav Šulc ◽  
Vít Šmilauer ◽  
František Wald

Fire resistance of buildings is based on fire tests in furnaces with gas burners. However, the tests are very expensive and time consuming. This article presents a coupled simulation of an element loaded by a force and a fire loading. The simulation solves a weakly-coupled problem, consisting of fluid dynamics, heat transfer and mechanical model. The temperature field from the computational fluid dynamics simulation (CFD) creates Cauchy and radiative boundary conditions for the thermal model. Then, the temperature field from element is passed to the mechanical model, which induces thermal strain and modifies material parameters. The fluid dynamics is computed with Fire Dynamics Simulator and the thermo-mechanical task is solved in OOFEM. Both softwares are interconnected with MuPIF python library, which allows smooth data transfer across the different meshes, orchestrating simulations in particular codes, exporting results to the VTK formats and distributed computing.


2014 ◽  
Vol 1021 ◽  
pp. 105-110
Author(s):  
Ya Fei Lou ◽  
Bai Tao Sun ◽  
Xuan Zhang

Due to the development of the computer hardware and the difficulties in determining the constitutive relation, it is difficult to research the crack propagation of large-scale masonry with the finite elements analysis method. The paper analyses the single storey concrete block masonry experimental model with the software LS-DYNA, using winfrith concrete material model instead of masonry material. And the calculated results were compared with the test results. The comparison indicates that the crack propagation of masonry can be simulated better with winfrith material model, which can be used in the finite elements analysis of large-scale masonry.


2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2019 ◽  
Vol 29 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Florian Gerland ◽  
Alexander Wetzel ◽  
Thomas Schomberg ◽  
Olaf Wünsch ◽  
Bernhard Middendorf

Abstract Modern concretes such as ultra-high performance concrete (UHPC) show excellent strength properties combined with favorable flow properties. However, the flow properties depend strongly on process parameters during production (temperature, humidity etc.), but also change sensitively even with slight variations in the mixture. In order to ensure desired processing of the fluidlike material and consistent process quality, the flow properties of the concrete must be evaluated quantitatively and objectively. The usual evaluation of measurements from concrete rheometers, for example of the ball probe system type, does not allow the direct determination of the objective material parameters yield stress and plastic viscosity of the sample. We developed a simulation-based method for the evaluation of rheometric measurements of fine grained high performance concretes like self-compacting concrete (SCC) and UHPC. The method is based on a dimensional analysis for ball measuring systems. Through numerical parameter studies we were able to describe the identified relationship between measuring quantities and material parameters quantitatively for two devices of this type. The evaluation method is based on the Bingham model. With this method it is possible to measure both the yield stress and the plastic viscosity of the fresh sample simultaneously. Device independence of the evaluation process is proven and an application to fiber-reinforced UHPC is presented.


2012 ◽  
Vol 217-219 ◽  
pp. 1497-1500 ◽  
Author(s):  
Xiao Jun Zuo ◽  
Jun Chu Li ◽  
Da Hai Liu ◽  
Long Fei Zeng

Constructing accurate constitutive equation from the optimal material constants is the basis for finite element numerical simulation. To accurately describe the creep ageing behavior of 2A12 aluminum alloy, the present work is tentatively to construct an elastic-plastic constitutive model for simulation based on the ANSYS environment. A time hardening model including two stages of primary and steady-state is physically derived firstly, and then determined by electronic creep tensile tests. The material constants within the creep constitutive equations are obtained. Furthermore, to verify the feasibility of the material model, the ANSYS based numerical scheme is established to simulate the creep tensile process by using the proposed material model. Results show that the creep constitutive equation can better describe the deformation characteristics of materials, and the numerical simulations and experimental test points are in good agreement.


Author(s):  
Theo W.J. van Asch ◽  
Bin Yu ◽  
Wei Hu

Many studies, which try to analyze the meteorological threshold conditions for debris flows ignore the type of initiation. This paper focuses on the differences in hydrological triggering processes of debris flows in channel beds of the source areas. The different triggering processes were studied in the laboratory and by model simulation on the field scale. The laboratory experiments were carried out in a flume, 8 m long and a width of 0.3 m. An integrated hydro-mechanical model was developed, describing Hortonian and Saturation overland flow, through flow, maximum sediment transport and failure of bed material. The model was tested on the processes observed in the flume. The flume experiments show a sequence of hydrological processes triggering debris flows, namely erosion and transport by intensive overland flow and by infiltrating water causing failure of channel bed material. Model simulations carried out on a schematic hypothetical source area of a catchment show that the type and sequence of these triggering processes are determined by slope angle and the hydraulic conductivity of the bed material. It was also clearly demonstrated that the type of initiation process and the geometrical and hydro-mechanical parameters may have a great influence on rainfall intensity-duration threshold curves, indicating the start of debris flows.


2020 ◽  
Vol 2 (4) ◽  
pp. 11-33
Author(s):  
Anna Pandolfi ◽  
Andrea Montanino

Purpose: The geometries used to conduct numerical simulations of the biomechanics of the human cornea are reconstructed from images of the physiological configuration of the system, which is not in a stress-free state because of the interaction with the surrounding tissues. If the goal of the simulation is a realistic estimation of the mechanical engagement of the system, it is mandatory to obtain a stress-free configuration to which the external actions can be applied. Methods: Starting from a unique physiological image, the search of the stress-free configuration must be based on methods of inverse analysis. Inverse analysis assumes the knowledge of one or more geometrical configurations and, chosen a material model, obtains the optimal values of the material parameters that provide the numerical configurations closest to the physiological images. Given the multiplicity of available material models, the solution is not unique. Results: Three exemplary material models are used in this study to demonstrate that the obtained, non-unique, stress-free configuration is indeed strongly dependent on both material model and on material parameters. Conclusion: The likeliness of recovering the actual stress-free configuration of the human cornea can be improved by using and comparing two or more imaged configurations of the same cornea.


2012 ◽  
Vol 152-154 ◽  
pp. 990-996 ◽  
Author(s):  
Fabio de Angelis

In the present work the evolutive laws and the constitutive relations for a model of nonlocal viscoplasticity are analyzed. Nonlocal dissipative variables and suitable regularization operators are adopted. The proposed model is developed within the framework of the generalized standard material model. Suitable forms of the elastic and dissipative viscoplastic potentials are defined and the associated constitutive relations are specialized. The evolutive laws for the proposed nonlocal viscoplastic model are presented in a general form which can be suitably specialized in order to include different models of nonlocal viscoplasticity.


2004 ◽  
Vol 126 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Abbas S. Milani ◽  
James A. Nemes

Engineering test data occasionally violate assumptions underlying standard material model identification. Consequently, one has to apply appropriate remedies with respect to each violation to enhance the reliability of identified material parameters. This paper generalizes the use of the signal-to-noise weighting scheme when heteroscedasticity of test data are suspected. Different mathematical and practical aspects of the approach are discussed. Additionally, the ensuing weighted identification process is simplified to an equivalent standard form by means of a space transformation. Finally, the approach is applied to the identification of a nonlinear material model for textile composites, on both qualitative and quantitative levels.


Aerospace ◽  
2005 ◽  
Author(s):  
Nakhiah Goulbourne ◽  
Eric Mockensturm ◽  
Mary Frecker

This paper presents dynamic results for spherical dielectric elastomer actuators subject to an inflating mechanical pressure and an applied voltage. Different equilibria modes arise during dynamic operation due to inertial effects. In previous work, the inertial effects have been studied for the limited case of a constant applied pressure during membrane deformation [1]. Here, novel results are presented in which the dynamic response of spherical dielectric elastomer actuators to a pressure-time loading history as well as a more realistic constant gas flow rate are considered. The results are calculated for both the damped and the zero-damped cases. The spherical membrane is assumed to follow the Mooney material model where various inflation modes arise depending on the material parameters. The range of Mooney material parameters considered, the driving pressure and the applied voltage all affect the dynamic response.


Sign in / Sign up

Export Citation Format

Share Document