scholarly journals Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues

2014 ◽  
Vol 17 (4) ◽  
pp. 5-15 ◽  
Author(s):  
Ekaterina Olegovna Koksharova ◽  
Alexander Yur'evich Mayorov ◽  
Marina Vladimirovna Shestakova ◽  
Ivan Ivanovich Dedov

According to the International Diabetes Federation, 10.9 million people have diabetes mellitus (DM) in Russia; however, only up to 4 million are registered. In addition, 11.9 million people have impaired glucose tolerance and impaired fasting glucose levels [1]. One of the significant risk factors for type 2 DM (T2DM) is obesity, which increases insulin resistance (IR). IR is the major pathogenetic link to T2DM. According to current concepts, there are three types of adipose tissue: white adipose tissue (WAT), brown adipose tissue (BAT) and ?beige?, of which the last two types have a thermogenic function. Some research results have revealed the main stages in the development of adipocytes; however, there is no general consensus regarding the development of ?beige? adipocytes. Furthermore, the biology of BAT and ?beige? adipose tissue is currently being intensively investigated, and some key transcription factors, signalling pathways and hormones that promote the development and activation of these tissues have been identified. The most discussed hormones are irisin and fibroblast growth factor 21, which have established positive effects on BAT and ?beige? adipose tissue with regard to carbohydrate, lipid and energy metabolism. The primary imaging techniques used to investigate BAT are PET-CT with 18F-fluorodeoxyglucose and magnetic resonance spectroscopy. With respect to the current obesity epidemic and associated diseases, including T2DM, there is a growing interest in investigating adipogenesis and the possibility of altering this process. BAT and ?beige? adipose tissue may be targets for developing drugs directed against obesity and T2DM.

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna-Claire Pilkington ◽  
Henry A. Paz ◽  
Umesh D. Wankhade

Adipose tissue (AT) is classified based on its location, physiological and functional characteristics. Although there is a clear demarcation of anatomical and molecular features specific to white (WAT) and brown adipose tissue (BAT), the factors that uniquely differentiate beige AT (BeAT) remain to be fully elaborated. The ubiquitous presence of different types of AT and the inability to differentiate brown and beige adipocytes because of similar appearance present a challenge when classifying them one way or another. Here we will provide an overview of the latest advances in BeAT, BAT, and WAT identification based on transcript markers described in the literature. The review paper will highlight some of the difficulties these markers pose and will offer new perspectives on possible transcript-specific identification of BeAT. We hope that this will advance the understanding of the biology of different ATs. In addition, concrete strategies to distinguish different types of AT may be relevant to track the efficacy and mechanisms around interventions aimed to improve metabolic health and thwart excessive weight gain.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Dammah Otieno ◽  
Ya Pei ◽  
Inah Gu ◽  
Sun-Ok Lee ◽  
Hye Won Kang

Abstract Objectives Activation of non-shivering thermogenesis in adipose tissues and alteration in intestinal microbiome have been linked with improved obese condition. With emerging evidences of dietary compounds to prevent obesity, the objective of this study was to examine whether quercetin activates non-shivering thermogenesis in adipose tissues and influences intestinal microbiome, which eventually improves obese condition. Methods Four-week-old C57BL/6 male mice were fed either a low-fat diet (LFD) or a high-fat diet (HFD) with or without 1% quercetin (Q) for 16 weeks. On the completion of the feeding study, brown adipose tissue (BAT), white adipose tissue (WAT), and cecum were collected. Total RNA was extracted from BAT and WAT, and then cDNA was synthesized. The expression of genes that are involved in the regulation of non-shivering thermogenesis such as uncoupling protein 1 (ucp1), cell death-inducing DFFA-like effector A (cidea), peroxisome proliferator-activated receptor gamma (pparγ), pparγ-coactivator 1 alpha (pgc1α), fibroblast growth factor 21 (fgf21), positive regulatory domain containing 16 (prdm16), and T-box protein 1 (tbx1) were determined by a real-time PCR. The expression of the proteins such as UCP1 and AMP-activated protein kinase (AMPK) was assessed by western blot analysis. Microbial populations in cecum were analyzed via the Illumnia MiSeq sequencing platform and QIIME (Quantitative Insights Into Microbial Ecology) Software. Results Mice fed HFDQ showed reduced body weight and retroperitoneal (R) WAT weight compared to mice fed HFD. Quercetin supplementation increased the expression of ucp1, prdm16, pgc1α, cidea, and tbx1 genes in BAT and RWAT of mice fed HFD. The expression of UCP1 protein and phosphorylation of AMPK were increased. However, browning effect was not observed in other WATs. Mice fed LFDQ and HFDQ exhibited higher relative abundance of Bacteroidetes than mice fed LFD and HFD whereas the relative abundance of Firmicutes was decreased. Conclusions Quercetin may be a potential dietary compound that increases energy metabolism by activating BAT and attracting beige adipocytes in RWAT. In addition, quercetin-induced energy metabolism may have a correlation with changes of microbial populations in intestine. Funding Sources The work was supported by USDA.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Umesh D. Wankhade ◽  
Michael Shen ◽  
Hariom Yadav ◽  
Keshari M. Thakali

Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and “beige” adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ya-Nan Duan ◽  
Xiang Ge ◽  
Hao-Wen Jiang ◽  
Hong-Jie Zhang ◽  
Yu Zhao ◽  
...  

Brown adipose tissue (BAT) and beige adipose tissue dissipate metabolic energy and mediate nonshivering thermogenesis, thereby boosting energy expenditure. Increasing the browning of BAT and beige adipose tissue is expected to be a promising strategy for combatting obesity. Through phenotype screening of C3H10-T1/2 mesenchymal stem cells, diphyllin was identified as a promising molecule in promoting brown adipocyte differentiation. In vitro studies revealed that diphyllin promoted C3H10-T1/2 cell and primary brown/beige preadipocyte differentiation and thermogenesis, which resulted increased energy consumption. We synthesized the compound and evaluated its effect on metabolism in vivo. Chronic experiments revealed that mice fed a high-fat diet (HFD) with 100 mg/kg diphyllin had ameliorated oral glucose tolerance and insulin sensitivity and decreased body weight and fat content ratio. Adaptive thermogenesis in HFD-fed mice under cold stimulation and whole-body energy expenditure were augmented after chronic diphyllin treatment. Diphyllin may be involved in regulating the development of brown and beige adipocytes by inhibiting V-ATPase and reducing intracellular autophagy. This study provides new clues for the discovery of anti-obesity molecules from natural products.


Author(s):  
Melisa Siannoto ◽  
Gaga Irawan Nugraha ◽  
Ronny Lesmana ◽  
Hanna Goenawan ◽  
Vita Muniarti Tarawan ◽  
...  

Abstract: Obesity has become a prominent epidemic disease since its worldwide prevalence has shown a continuous rise over the past few decades. The primary aim of obesity treatment is to effectively reduce the intake of energy, while simultaneously increasing energy expenditure. Increasing thermogenesis is one of the methods to increase energy expenditure. Thermogenesis, which primarily occurs in brown adipose tissue, can also be produced by beige adipose tissue, through a process known as browning. The browning process has recently been attracting a great deal of attention as a potential anti-obesity agent. Many well-researched inducers of the browning process are readily available, including cold exposure, agonist β3-adrenergic, agonist peroxisome proliferator activated receptor γ, fibroblast growth factor 21, irisin and several nutraceuticals (including resveratrol, curcumin, quercetin, fish oils, green tea, etc.). This mini review summarizes the current knowledge and the latest research of some nutraceuticals that are potentially involved in the browning process


2020 ◽  
Vol 21 (17) ◽  
pp. 6241 ◽  
Author(s):  
Alina Kuryłowicz ◽  
Monika Puzianowska-Kuźnicka

The ongoing obesity pandemic generates a constant need to develop new therapeutic strategies to restore the energy balance. Therefore, the concept of activating brown adipose tissue (BAT) in order to increase energy expenditure has been revived. In mammals, two developmentally distinct types of brown adipocytes exist; the classical or constitutive BAT that arises during embryogenesis, and the beige adipose tissue that is recruited postnatally within white adipose tissue (WAT) in the process called browning. Research of recent years has significantly increased our understanding of the mechanisms involved in BAT activation and WAT browning. They also allowed for the identification of critical molecules and critical steps of both processes and, therefore, many new therapeutic targets. Several non-pharmacological approaches, as well as chemical compounds aiming at the induction of WAT browning and BAT activation, have been tested in vitro as well as in animal models of genetically determined and/or diet-induced obesity. The therapeutic potential of some of these strategies has also been tested in humans. In this review, we summarize present concepts regarding potential therapeutic targets in the process of BAT activation and WAT browning and available strategies aiming at them.


2021 ◽  
Author(s):  
Ben T McNeill ◽  
Karla J Suchacki ◽  
Roland H. Stimson

Excessive accumulation of white adipose tissue leads to obesity and its associated metabolic health consequences such as type 2 diabetes and cardiovascular disease. Several approaches to treat or prevent obesity including public health interventions, surgical weight loss, and pharmacological approaches to reduce caloric intake have failed to substantially modify the increasing prevalence of obesity. The (re-)discovery of active brown adipose tissue (BAT) in adult humans approximately 15 years ago led to a resurgence in research into whether BAT activation could be a novel therapy for the treatment of obesity. Upon cold stimulus, BAT is activated and generates heat to maintain body temperature, thus increasing energy expenditure. Activation of BAT may provide a unique opportunity to increase energy expenditure without the need for exercise. However, much of the underlying mechanisms surrounding BAT activation are still being elucidated and the effectiveness of BAT as a therapeutic target has not been realised. Research is ongoing to determine how best to expand BAT mass and activate existing BAT; approaches include cold exposure, pharmacological stimulation using sympathomimetics, browning agents that induce formation of thermogenic beige adipocytes in white adipose depots, and the identification of factors secreted by BAT with therapeutic potential. In this review, we discuss the caloric capacity and other metabolic benefits from BAT activation in humans and the role of metabolic tissues such as skeletal muscle in increasing energy expenditure. We discuss the potential of current approaches and the challenges of BAT activation as a novel strategy to treat obesity and metabolic disorders.


2017 ◽  
Vol 6 (5) ◽  
pp. R70-R79 ◽  
Author(s):  
Florian W Kiefer

Promotion of brown adipose tissue (BAT) activity or browning of white adipose tissue has shown great potential as anti-obesity strategy in numerous preclinical models. The discovery of active BAT in humans and the recent advances in the understanding of human BAT biology and function have significantly propelled this field of research. Pharmacological stimulation of energy expenditure to counteract obesity has always been an intriguing therapeutic concept; with the identification of the specific molecular pathways of brown fat function, this idea has now become as realistic as ever. Two distinct strategies are currently being pursued; one is the activation of bone fide BAT, the other is the induction of BAT-like cells or beige adipocytes within white fat depots, a process called browning. Recent evidence suggests that both phenomena can occur in humans. Cold-induced promotion of BAT activity is strongly associated with enhanced thermogenesis and energy expenditure in humans and has beneficial effects on fat mass and glucose metabolism. Despite these encouraging results, a number of issues deserve additional attention including the distinct characteristics of human vs rodent BAT, the heterogeneity of human BAT depots or the identification of the adipocyte precursors that can give rise to thermogenic cells in human adipose tissue. In addition, many pharmaceutical compounds are being tested for their ability to promote a thermogenic program in human adipocytes. This review summarizes the current knowledge about the various cellular and molecular aspects of human BAT as well as the relevance for energy metabolism including its therapeutic potential for obesity.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 319
Author(s):  
Christel L. Roth ◽  
Filippo Molica ◽  
Brenda R. Kwak

Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established during embryogenesis, and beige cells emerge from white adipose tissue exposed to specific stimuli like cold exposure into a process called browning. The consecutive energy expenditure of both thermogenic adipose tissues has shown therapeutic potential in metabolic disorders like obesity and diabetes. The latest data suggest promising effects on atherosclerosis development as well. Upon cold exposure, mice and humans have a physiological increase in brown adipose tissue activation and browning of white adipocytes is promoted. The use of drugs like β3-adrenergic agonists in murine models induces similar effects. With respect to atheroprotection, thermogenic adipose tissue activation has beneficial outcomes in mice by decreasing plasma triglycerides, total cholesterol and low-density lipoproteins, by increasing high-density lipoproteins, and by inducing secretion of atheroprotective adipokines. Atheroprotective effects involve an unaffected hepatic clearance. Latest clinical data tend to find thinner atherosclerotic lesions in patients with higher brown adipose tissue activity. Strategies for preserving healthy arteries are a major concern for public health.


Sign in / Sign up

Export Citation Format

Share Document