scholarly journals Characterization of hydrocarbon reservoir by pore fluid and lithology using elastic parameters in an x field, Niger delta, Nigeria

2018 ◽  
Vol 6 (2) ◽  
pp. 173
Author(s):  
Akpabio . ◽  
Idara O ◽  
Ojo . ◽  
Odunayo T

Quantitative rock physics analysis was carried out to determine the lithology and pore fluid of a reservoir in the Niger Delta. Density, compressional wave velocity and shear wave velocity logs were used as input to calculate elastic parameters such as velocity ratio, Poisson’s ratio, and Bulk Modulus, after estimating the hydrocarbon reservoir in the X field. The calculated velocity ratio log was used to differentiate between sand, sandstone and shale. Poisson’s ratio and velocity ratio were used delineate pore fluid content; gas sand, oil sand and sandstone formation from cross plot analysis. The reservoir in the field lies ranges from 9050 - 9426.5ft, (2760.25 – 2874.93m), this confirm what is obtained in the Niger Delta Basin. The Net Pay zones show an economical viable reservoir, it Net pay depth is 39 – 73.5ft. The Porosity and Permeability of the reservoirs suggested a productivity hydrocarbon reservoir. The reservoir lies between Gas sands, Oil sands and Brine sands, reservoir 2 and reservoir 3 are oil sand reservoirs while reservoir 1 lies between an oil sand and a brine sand.   

2021 ◽  
Vol 9 ◽  
Author(s):  
Rupeng Ma ◽  
Jing Ba ◽  
José Carcione ◽  
Maxim Lebedev ◽  
Changsheng Wang

The petrophysical properties can be proper indicators to identify oil and gas reservoirs, since the pore fluids have significant effects on the wave response. We have performed ultrasonic measurements on two sets of tight siltstones and dolomites at partial saturation. P- and S-wave velocities are obtained by the pulse transmission technique, while attenuation is calculated using the centroid-frequency shift and spectral-ratio methods. The fluid sensitivities of different properties (i.e., P- and S-wave velocities, impedances and attenuation, Poisson's ratio, density, and their combinations) are quantitatively analyzed by considering the data distribution, based on the crossplot technique. The result shows that the properties (P- to S-wave velocity and attenuation ratios, Poisson's ratio, and first to second Lamé constant ratio) with high fluid-sensitivity indicators successfully distinguish gas from oil and water, unlike oil from water. Moreover, siltstones and dolomites can be identified on the basis of data distribution areas. Ultrasonic rock-physics templates of the P- to S-wave velocity ratio vs. the product of first Lamé constant with density obtained with a poroelastic model, considering the structural heterogeneity and patchy saturation, are used to predict the saturation and porosity, which are in good agreement with the experimental data at different porosity ranges.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ran Bachrach ◽  
Jack Dvorkin ◽  
Amos M. Nur

We determined P- and S-wave velocity depth profiles in shallow, unconsolidated beach sand by analyzing three‐component surface seismic data. P- and S-wave velocity profiles were calculated from traveltime measurements of vertical and tangential component seismograms, respectively. The results reveal two discrepancies between theory and data. Whereas both velocities were found to be proportional to the pressure raised to the power of 1/6, as predicted by the Hertz‐Mindlin contact theory, the actual values of the velocities are less than half of those calculated from this theory. We attribute this discrepancy to the angularity of the sand grains. Assuming that the average radii of curvature at the grain contacts are smaller than the average radii of the grains, we modify the Hertz‐Mindlin theory accordingly. We found that the ratio of the contact radius to the grain radius is about 0.086. The second disparity is between the observed Poisson’s ratio of 0.15 and the theoretical value (0.008 for random pack of quartz spheres). This discrepancy can be reconciled by assuming slip at the grain contacts. Because slip decreases the shearing between grains, Poisson’s ratio increases.


2003 ◽  
Vol 51 (8) ◽  
pp. 2417-2426 ◽  
Author(s):  
Anish Kumar ◽  
T. Jayakumar ◽  
Baldev Raj ◽  
K.K. Ray

Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 819-824 ◽  
Author(s):  
Harsh K. Gupta ◽  
Ronald W. Ward ◽  
Tzeu‐Lie Lin

Analysis of P‐ and S‐waves from shallow microearthquakes in the vicinity of The Geysers geothermal area, California, recorded by a dense, telemetered seismic array operated by the U.S. Geological Survey (USGS) shows that these phases are easily recognized and traced on record sections to distances of 80 km. Regional average velocities for the upper crust are estimated to be [Formula: see text] and [Formula: see text] for P‐ and S‐waves, respectively. Poisson’s ratio is estimated at 23 locations using Wadati diagrams and is found to vary from 0.13 to 0.32. In general, the Poisson’s ratio is found to be lower at the locations close to the steam production zones at The Geysers and Clear Lake volcanic field to the northeast. The low Poisson ratio corresponds to a decrease in P‐wave velocity in areas of high heat flow. The decrease may be caused by fracturing of the rock and saturation with gas or steam.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5007
Author(s):  
Stian Rørheim ◽  
Mohammad Hossain Bhuiyan ◽  
Andreas Bauer ◽  
Pierre Rolf Cerasi

Carbon capture and storage (CCS) by geological sequestration comprises a permeable formation (reservoir) for CO2 storage topped by an impermeable formation (caprock). Time-lapse (4D) seismic is used to map CO2 movement in the subsurface: CO2 migration into the caprock might change its properties and thus impact its integrity. Simultaneous forced-oscillation and pulse-transmission measurements are combined to quantify Young’s modulus and Poisson’s ratio as well as P- and S-wave velocity changes in the absence and in the presence of CO2 at constant seismic and ultrasonic frequencies. This combination is the laboratory proxy to 4D seismic because rock properties are monitored over time. It also improves the understanding of frequency-dependent (dispersive) properties needed for comparing in-situ and laboratory measurements. To verify our method, Draupne Shale is monitored during three consecutive fluid exposure phases. This shale appears to be resilient to CO2 exposure as its integrity is neither compromised by notable Young’s modulus and Poisson’s ratio nor P- and S-wave velocity changes. No significant changes in Young’s modulus and Poisson’s ratio seismic dispersion are observed. This absence of notable changes in rock properties is attributed to Draupne being a calcite-poor shale resilient to acidic CO2-bearing brine that may be a suitable candidate for CCS.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850362 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
Sajid Anwar ◽  
Waheed Anwar ◽  
Fazal-e-Aleem

The first-principles study of cubic perovskites SmXO3 (X = Al and Co) for elastic, mechanical and optical properties is done in the framework of density functional theory (DFT). Optimized structural parameters are obtained first to find mechanical and optical properties of the materials. These obtained structural parameters are in accordance with the published data. The cubic elastic parameters C[Formula: see text], C[Formula: see text] and C[Formula: see text] are then calculated by using generalized gradient approximation (GGA) as an exchange correlation functional in Kohn–Sham equations. Poisson’s ratio, shear modulus, Young’s modulus and anisotropic factor are deduced from these elastic parameters. These compounds are found to be elastically anisotropic and SmAlO3 is brittle while SmCoO3 is ductile. Their covalent nature is also discussed by using Poisson’s ratio. In addition, optical properties like absorption coefficient, extinction coefficient, energy loss function, dielectric function, refractive index, reflectivity and optical conductivity are studied. This study predicts that SmAlO3 and SmCoO3 are suitable for optoelectronic devices.


Géotechnique ◽  
2021 ◽  
pp. 1-39
Author(s):  
Chi-Chin Tsai ◽  
Hsing-Wen Liu ◽  
Domniki Asimaki

The compression wave velocity (Vp) of sediments plays a key role in seismic wave amplification of vertical motion and is required in site response analysis. However, such information is usually lacking during field exploration (e.g., surface wave method) because only shear wave velocity (Vs) is obtained. This study aims to predict Vp based on Vs empirically and theoretically, especially focusing on saturated conditions. The empirical approach is to establish the Vp correlation dependency on Poisson's ratio and Vs, and the theoretical approach is based on poroelastic theory that accounts for the interaction between fluid and soil skeleton. The Engineering Geological Database for the Taiwan Strong Motion Instrumentation Program and the Kiban Kyoshin Network database in Japan are adopted to establish an empirical model and validate poroelastic theory. The validated poroelastic approach is used to develop a constrained modulus reduction curve dependency on the porosity, Vs, Poisson's ratio, and degree of saturation with a shear modulus reduction curve. The proposed approach can be used to develop generic Vp profiles and constrained modulus reduction curves for the site response to vertical motion given a site specific Vs profile.


2020 ◽  
Vol 222 (1) ◽  
pp. 582-594
Author(s):  
Thomas Forbriger ◽  
Lingli Gao ◽  
Peter Malischewsky ◽  
Matthias Ohrnberger ◽  
Yudi Pan

SUMMARY Other than commonly assumed in seismology, the phase velocity of Rayleigh waves is not necessarily a single-valued function of frequency. In fact, a single Rayleigh mode can exist with three different values of phase velocity at one frequency. We demonstrate this for the first higher mode on a realistic shallow seismic structure of a homogeneous layer of unconsolidated sediments on top of a half-space of solid rock (LOH). In the case of LOH a significant contrast to the half-space is required to produce the phenomenon. In a simpler structure of a homogeneous layer with fixed (rigid) bottom (LFB) the phenomenon exists for values of Poisson’s ratio between 0.19 and 0.5 and is most pronounced for P-wave velocity being three times S-wave velocity (Poisson’s ratio of 0.4375). A pavement-like structure (PAV) of two layers on top of a half-space produces the multivaluedness for the fundamental mode. Programs for the computation of synthetic dispersion curves are prone to trouble in such cases. Many of them use mode-follower algorithms which loose track of the dispersion curve and miss the multivalued section. We show results for well established programs. Their inability to properly handle these cases might be one reason why the phenomenon of multivaluedness went unnoticed in seismological Rayleigh wave research for so long. For the very same reason methods of dispersion analysis must fail if they imply wave number kl(ω) for the lth Rayleigh mode to be a single-valued function of frequency ω. This applies in particular to deconvolution methods like phase-matched filters. We demonstrate that a slant-stack analysis fails in the multivalued section, while a Fourier–Bessel transformation captures the complete Rayleigh-wave signal. Waves of finite bandwidth in the multivalued section propagate with positive group-velocity and negative phase-velocity. Their eigenfunctions appear conventional and contain no conspicuous feature.


Sign in / Sign up

Export Citation Format

Share Document