scholarly journals Quality based drip drag match data collection in wireless sensor network

2017 ◽  
Vol 7 (1.1) ◽  
pp. 426
Author(s):  
V Jayaraj ◽  
S Alonshia

Although data collection has received much attention by effectively minimizing delay, computational complexity and increasing the total data transmitted, the transience of sensor nodes for multiple data collection of sensed node in wireless sensor network (WSN) renders quality of service a great challenge. To circumvent transience of sensor nodes for multiple data collection, Quality based Drip-Drag-Match Data Collection (QDDM-DC) scheme have been proposed. In Drip-Drag-Match data collection scheme, initially dripping of data is done on the sink by applying Equidistant-based Optimum Communication Path from the sensor nodes which reduces the data loss. Next the drag operation pulls out the required sensed data using Neighbourhood-based model from multiple locations to reduce the delay for storage. Finally, the matching operation, compares the sensed data received by the dragging operation to that of the corresponding sender sensor node (drip stage) and stores the sensed data accurately which in turn improves the throughput and quality of data collection. Simulation is carried for the QDDM-DC scheme with multiple scenarios (size of data, number of sinks, storage capacity) in WSN with both random and deterministic models. Simulation results show that QDDM-DC provides better performance than other data collection schemes, especially with high throughput, ensuring minimum delay and data loss for effective multiple data collection of sensed data in WSN.

Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


2013 ◽  
Vol 774-776 ◽  
pp. 1556-1559 ◽  
Author(s):  
Kai Guo Qian ◽  
Li Mui ◽  
Tian Ma Zuo ◽  
Zhi Qiang Xu

Deployment and coverage, studied how to effectively place and control of sensor nodes and to make WSN covered the monitoring area with the purpose of minimum the energy consumption and prolonging the network life cycle under the premise of guarantee the quality of service (QOS),are the primary problems for construction wireless sensor network. This paper analyzes important factors for resolve the coverage problem such as sensing models and deployment way, followed survey the state-of-the art coverage contro1 techniques and presents an overview and analysis of the solution proposed in recent research literature, Further research directions are pointed out in the end.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaomin Li ◽  
Lixue Zhu ◽  
Xuan Chu ◽  
Han Fu

At present, precision agriculture and smart agriculture are the hot topics, which are based on the efficient data collection by using wireless sensor networks (WSNs). However, agricultural WSNs are still facing many challenges such as multitasks, data quality, and latency. In this paper, we propose an efficient solution for multiple data collection tasks exploiting edge computing-enabled wireless sensor networks in smart agriculture. First, a novel data collection framework is presented by merging WSN and edge computing. Second, the data collection process is modeled, including a plurality of sensors and tasks. Next, according to each specific task and correlation between task and sensors, on the edge computing server, a double selecting strategy is established to determine the best node and sensor network that fulfills quality of data and data collection time constraints of tasks. Furthermore, a data collection algorithm is designed, based on set values for quality of data. Finally, a simulation environment is constructed where the proposed strategy is applied, and results are analyzed and compared to the traditional methods. According to the comparison results, the proposal outperforms the traditional methods in metrics.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Noureddine Assad ◽  
Brahim Elbhiri ◽  
Moulay Ahmed Faqihi ◽  
Mohamed Ouadou ◽  
Driss Aboutajdine

The intrusion detection application in a homogeneous wireless sensor network is defined as a mechanism to detect unauthorized intrusions or anomalous moving attackers in a field of interest. The quality of deterministic sensor nodes deployment can be determined sufficiently by a rigorous analysis before the deployment. However, when random deployment is required, determining the deployment quality becomes challenging. An area may require that multiple nodes monitor each point from the sensing area; this constraint is known ask-coverage wherekis the number of nodes. The deployment quality of sensor nodes depends directly on node density and sensing range; mainly a random sensor nodes deployment is required. The major question is centred around the problem of network coverage, how can we guarantee that each point of the sensing area is covered by the required number of sensor nodes and what a sufficient condition to guarantee the network coverage? To deal with this, probabilistic intrusion detection models are adopted, called single/multi-sensing detection, and the deployment quality issue is surveyed and analysed in terms of coverage. We evaluate the capability of our probabilistic model in homogeneous wireless sensor network, in terms of sensing range, node density, and intrusion distance.


Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


Author(s):  
Edison Pignaton de Freitas ◽  
Tales Heimfarth ◽  
Ivayr Farah Netto ◽  
Carlos Eduardo Pereira ◽  
Armando Morado Ferreira ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


Sign in / Sign up

Export Citation Format

Share Document