scholarly journals Skin cancer detection and stage prediction using image processing techniques

2018 ◽  
Vol 7 (1.8) ◽  
pp. 204 ◽  
Author(s):  
Sheeju Diana ◽  
Ramamurthy B

Skin cancer is one of the perilous forms of cancer that most recently occurred in preceding and in recent years as well. Early detection of skin cancer is curable and it eliminates the cost that is spent on the advanced treatment. Skin cancer mainly occurs due to exposure to sun’s ultraviolet radiation and other environmental threats. It can be categorized into, Melanoma and Non-Melanoma. Melanoma is dangerous one. Once it is occurred it starts spreading across other parts of the body if not treated in the early stages. Non-Melanoma is a static cancer which does not affect the normal cells of the skin. This paper aims to develop an application to detect skin cancer and stage prediction using Image Processing Techniques. Stage is predicted, so that the treatment for the same is done without any delay. Skin cancer affected image is taken as input and various preprocessing techniques is applied for the same. The Preprocessing Techniques such as Noise Removal is applied on the image to filter out the noise. Filtered image is enhanced using Histogram Equalization and image is segmented to extract the affected portion. The Area, Perimeter and Eccentricity values are calculated for the affected portion of the skin. The values are then fed into the Neural Networks using Back Propagation algorithm in order to predict the Stage and type of the Skin cancer.

Author(s):  
Aishwarya .R

Abstract: Lung cancer has been a major contribution to mortality rates world-wide for many years now. There is a need for early diagnosis of lung cancer which if implemented, will help in reducing mortality rates. Recently, image processing techniques have been widely applied in various medical facilities for accurate detection and diagnosis of abnormality in the body images like in various cancers such as brain tumour, breast tumour and lung tumour. This paper is a development of an algorithm based on medical image processing to segment the lung tumour in CT images due to the lack of such algorithms and approaches used to detect tumours. The work involves the application of different image processing tools in order to arrive at the desired result when combined and successively applied. The segmentation system comprises different steps along the process. First, Image preprocessing is done where some enhancement is done to enhance and reduce noise in images. In the next step, the different parts in the images are separated to be able to segment the tumour. In this phase threshold value was selected automatically. Then morphological operation (Area opening) is implemented on the thresholded image. Finally, the lung tumour is accurately segmented by subtracting the opened image from the thresholded image. Support Vector Machine (SVM) classifier is used to classify the lung tumour into 4 different types: Adenocarcinoma(AC), Large Cell Carcinoma(LCC) Squamous Cell Carcinoma(SCC), and No tumour (NT). Keywords: Lung tumour; image processing techniques; segmentation; thresholding; image enhancement; Support Vector Machine; Machine learning;


The mortality rate is increasing among the growing population and one of the leading causes is lung cancer. Early diagnosis is required to decrease the number of deaths and increase the survival rate of lung cancer patients. With the advancements in the medical field and its technologies CAD system has played a significant role to detect the early symptoms in the patients which cannot be carried out manually without any error in it. CAD is detection system which has combined the machine learning algorithms with image processing using computer vision. In this research a novel approach to CAD system is presented to detect lung cancer using image processing techniques and classifying the detected nodules by CNN approach. The proposed method has taken CT scan image as input image and different image processing techniques such as histogram equalization, segmentation, morphological operations and feature extraction have been performed on it. A CNN based classifier is trained to classify the nodules as cancerous or non-cancerous. The performance of the system is evaluated in the terms of sensitivity, specificity and accuracy


2017 ◽  
Vol 10 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Prannoy Giri ◽  
K. Saravanakumar

Breast Cancer is one of the significant reasons for death among ladies. Many research has been done on the diagnosis and detection of breast cancer using various image processing and classification techniques. Nonetheless, the disease remains as one of the deadliest disease. Having conceive one out of six women in her lifetime. Since the cause of breast cancer stays obscure, prevention becomes impossible. Thus, early detection of tumour in breast is the only way to cure breast cancer. Using CAD (Computer Aided Diagnosis) on mammographic image is the most efficient and easiest way to diagnosis for breast cancer. Accurate discovery can effectively reduce the mortality rate brought about by using mamma cancer. Masses and microcalcifications clusters are an important early symptoms of possible breast cancers. They can help predict breast cancer at it’s infant state. The image for this work is being used from the DDSM Database (Digital Database for Screening Mammography) which contains approximately 3000 cases and is being used worldwide for cancer research. This paper quantitatively depicts the analysis methods used for texture features for detection of cancer. These texture featuresare extracted from the ROI of the mammogram to characterize the microcalcifications into harmless, ordinary or threatening. These features are further decreased using Principle Component Analysis(PCA) for better identification of Masses. These features are further compared and passed through Back Propagation algorithm (Neural Network) for better understanding of the cancer pattern in the mammography image.


Author(s):  
Mohammed Rasheed ◽  
Asma Abdulelah Abdulrahman ◽  
Suha Shihab

This article introduces novel image processing techniques due to improve the images under examine based on Chebyshev wavelet filter. The technique enabling to obtain Chebyshev wavelet transform using four kinds of Chebyshev wavelet operation matrix of integration, which conduct to enhance the images quality under examine. After comparing the results with standard waves that have a large role in the image processing, it was concluded that the second type of proposed wavelets is the most efficient of the three types, all this work was done using the MatLab program. The obtained results indicate decreasing of MSE= 1.777910-29, increasing both PSNR=340.2918, BPP=0.0078125 and compression ratio CR=0.03% reveal the effectiveness and accuracy of the suggested technique. The results can be utilized in various areas such as science treatment, medicine, noise removal and compression images.


Image processing in biomedical field is being increasingly used for the detection and diagnosis of various abnormalities in the body parts. The detection of brain tumours using image processing on MRI images is one such field where better results are obtained as comparative to CT-scan and x-ray. Prior detection of the brain tumour is desirable and possible with the help of machine learning and image processing techniques. These techniques detect even a small abnormality in the human brain following a four-stage process which includes pre-processing, segmentation, feature extraction and optimization. Different parameters such as accuracy, PSNR, MSE are calculated to find out the efficiency of process and to compare it with other methods. This paper reviews about various different approaches which are used to detect the brain tumor using image processing techniques.


2020 ◽  
pp. 1422-1436
Author(s):  
Seema Singh ◽  
V. Tejaswini ◽  
Rishya P. Murthy ◽  
Amit Mutgi

Cervical Cancer is one of the most common cancers among women worldwide. Few concerns have arisen such as the shortage of skilled pathologists leading to increase in burden on them. This requires a need for efficient and accurate method that diagnoses cervical cancer without human intervention. In this paper, an automated system is developed for diagnosis of cervical cancer using image processing techniques and neural networks. The system is developed using Cytology images taken from Bangalore based cancer pathologist. MATLAB image processing toolbox is used to extract features from cytology images that are used for discriminating various stages of cervical cancer. The dominant features used for diagnosis are Nucleus to cytoplasm ratio, shape, and color intensity along with nucleus area, perimeter and eccentricity. These features are used to train the neural network using Back-propagation algorithm of supervised training method. The cytology cells were then successfully classified as non-cancerous, low- grade and high-grade cancer cells.


Sign in / Sign up

Export Citation Format

Share Document