scholarly journals Sediment Transport and Characteristics in Perak River and Kurau River

2018 ◽  
Vol 7 (2.29) ◽  
pp. 849
Author(s):  
A Saleh ◽  
I Abustan ◽  
Mohd Remy Rozainy M. A. Z. ◽  
N Sabtu

Particle size is the most important parameter to deal in sediment transport processes. This parameter is important to determine the class of sediment transport in river. It is also important for the selection of site for sand mining operation through the determination of the size of sediment, sediment capacity and sediment replenishment rate. Data were obtained through observations made from two rivers namely Sungai Perak and Sungai Kurau in Malaysia. The rivers were categorized as wide river for Sungai Perak and small river for Sungai Kurau. For Sungai Perak, the width of river ranges from 248.18 to 338.53 meter whilst the width of Sungai Kurau ranges from 9 to 11 meter. Data covers flow discharges from 130.988 m3/s to 435.915 m3/s for Sungai Perak and from 2.52 m3/s to 4.723 m3/s for Sungai Kurau. Based on the results, the bed load of two rivers are found to be mostly uniform mixture. The results indicate that these two Malaysian rivers mostly have uniform bed load The bed material for the two rivers are poorly graded mixture and the median size of bed loads mostly ranges from 0.62 to 2.94 mm. 

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 73 ◽  
Author(s):  
Gergely T. Török ◽  
János Józsa ◽  
Sándor Baranya

The aim of this study is to introduce a novel method which can separate sand- or gravel-dominated bed load transport in rivers with mixed-size bed material. When dealing with large rivers with complex hydrodynamics and morphodynamics, the bed load transport modes can indicate strong variation even locally, which requires a suitable approach to estimate the locally unique behavior of the sediment transport. However, the literature offers only few studies regarding this issue, and they are concerned with uniform bed load. In order to partly fill this gap, we suggest here a decision criteria which utilizes the shear Reynolds number. The method was verified with data from field and laboratory measurements, both performed at nonuniform bed material compositions. The comparative assessment of the results show that the shear Reynolds number-based method operates more reliably than the Shields–Parker diagram and it is expected to predict the sand or gravel transport domination with a <5% uncertainty. The results contribute to the improvement of numerical sediment transport modeling as well as to the field implementation of bed load transport measurements.


2010 ◽  
Vol 58 (1) ◽  
pp. 36-48 ◽  
Author(s):  
Raaj Ramsankaran ◽  
Christian Maerker ◽  
Andreas Malcherek

Numerical modelling of hydrodynamics and sediment transport processes during storm events in a non-perennial riverThis article presents the numerical modelling of hydrodynamics and sediment transport processes in the seasonal Pathri Rao River, which flows in the Northern part of India. Modelling is made by the coupled application of the hydrodynamic model called TELEMAC-2D and the morphodynamic model called SediMorph. The hydrodynamic model results are validated with the observed data and it has been found that the present model provides reasonable predictions. Likewise, the validation of the morphodynamic model is also presented. For this purpose, the suspended and bed load transport modules are validated separately for four runoff events observed during the investigations. The validation of the former is approached by comparing the depth-averaged suspended transport concentrations against experimental measurements made at the make-shift gauging station and subsequent comparison against experimental measurements. On the other hand, due to non-availability of the observed values on bed load sediment transport, the bed load sediment transport and bed evolution numerical results could not be validated quantitatively and was approached only on qualitative basis. In general, both validations present an acceptable agreement with measurements and scientific facts. Further, this study demonstrates that the coupled TELEMAC-2D/SediMorph system could be used with confidence for practical applications in the Pathri Rao River.


2011 ◽  
Vol 666 ◽  
pp. 36-76 ◽  
Author(s):  
CRISTIAN ESCAURIAZA ◽  
FOTIS SOTIROPOULOS

Motivated by the need to gain fundamental insights into the mechanisms of bed-load sediment transport in turbulent junction flows, we carry out a computational study of Lagrangian dynamics of inertial particles initially placed on the bed upstream of a surface-mounted circular cylinder in a rectangular open channel (Dargahi, J. Hydraul. Engng, vol. 116, 1990, pp. 1197–1214). The flow field at Re = 39000 is simulated using the detached eddy simulation (DES) approach (Spalart et al., In Advances in DNS/LES, ed. C. Liu & Z. Liu, 1997, Greyden), which has already been shown to accurately resolve most of the turbulent stresses produced by the low-frequency, bimodal fluctuations of the turbulent horseshoe vortex (Paik et al., J. Hydraul. Engng, vol. 131, 1990, pp. 441–456; Escauriaza & Sotiropoulos, Flow Turbul. Combust., 2010, in press). The trajectory and momentum equations for the sediment particles are integrated numerically simultaneously with the flow governing equations assuming one-way coupling and neglecting particle-to-particle interactions (dilute flow) but taking into account bed–particle interactions and the effects of the instantaneous hydrodynamic forces induced by the resolved fluctuations of the coherent vortical structures. The computed results show that, in accordance with the simulated clear-water scour condition (i.e. the magnitude of the particle stresses is near the threshold of motion), the transport of sediment grains is highly intermittent and exhibits essentially all the characteristics of bed-load sediment transport observed in laboratory and field experiments. Groups of sediment grains are dislodged from the bed simultaneously in seemingly random bursting events and begin to move, saltating or sliding along the bed. Furthermore, particles that are not entrained into the bed-load layer are found to form streaks aligned with near-wall vortices around the cylinder. The global transport of particles is studied by performing a statistical analysis of the bed-load flux to reveal scale-invariance of the process and multifractality of particle transport as the overall effect of the coherent structures of the flow. A major finding of this work is that a relatively simple Lagrangian model coupled with a coherent-structure resolving simulation of the turbulent flow is able to reproduce the sediment dynamics observed in multiple experiments performed under similar conditions, and provide fundamental information on the initiation of motion and the multifractal nature of bed-load transport processes. The results also motivate the development of new Eulerian bed-load transport models that consider unsteady conditions and incorporate the intermittency of the unresolved scales of sediment motion.


Author(s):  
Gergely T. Török ◽  
János Józsa ◽  
Sándor Baranya

The aim of this study is to introduce a novel method which can separate sand or gravel dominated bed load transport in rivers with mixed-size bed material. In engineering practice, the Shields-Parker diagram could be used for such purposes, however, the method has certain applicability limits, due to the fact that it is based on uniform bed material and provides information rather on river-scale, instead of reach or local scale. When dealing with large rivers with complex hydrodynamics and morphodynamics the bed load transport modes can also indicate strong variation even locally, which requires a more suitable approach to estimate the locally unique behavior of the sediment transport. Here, we suggest that the decision criteria utilizes the shear Reynolds number (Re*). The method was verified against field and laboratory measurement data, both performed at non-uniform bed material compositions. The comparative assessment of the results show that the shear Reynolds number based method operates more reliably than the Shields-Parker diagram and it is expected to predict the sand or gravel transport domination with a &lt; 5% uncertainty. The introduced results can greatly contribute to the improvement of numerical sediment transport modeling as well as to the field implementation of bed load transport measurements.


2013 ◽  
Vol 61 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Arman Haddadchi ◽  
Mohammad H. Omid ◽  
Amir A. Dehghani

Abstract Twelve predictive bedload sediment transport equations are rated against 14 sets of gravel-bed river field data collected by handheld bedload sampler in Narmab River, northeastern Iran. To evaluate these formulas two types of grain size namely bedload and bed material were used. The results show that the equations of Engelund and Hansen, Van Rijn and Einstein perform well with bed material grain size, while Shocklitsch, Meyer-Peter and Mueller, and Frijlink yield the best results using the bedload grain size.


2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Weiming Wu ◽  
Qianru Lin

Nonuniform sediment transport exhibits difference from uniform sediment, even when the mean grain size is the same for both cases. The hiding, exposure, and armoring among different size fractions in the nonuniform bed material may significantly affect sediment transport, morphological change, bed roughness, wave dissipation, etc. It is necessary to develop multiple-sized sediment transport capacity formula to improve the accuracy and reliability of coastal analysis tools. The Wu et al. (2000) formula, which was developed for river sedimentation, is herein extended to calculate multiple-sized sediment transport under current and waves for coastal applications. This formula relates bed-load transport to the grain shear stress and suspended-load transport to the energy of the flow system. It considers the effect of bed material size composition in the hiding and exposure correction factor, which is omitted in many other existing formulas. Methods have been developed in this study to determine the bed shear stress due to waves only and combined current and waves, and in turn to compute the bed-load and suspended-load transport rates using the Wu et al. (2000) formula without changing its original formulation. The enhanced bed-load formula considers the effect of wave asymmetry on sediment transport, calculates the onshore and offshore bed-load transport rates separately and then derives the net transport rate, whereas the enhanced suspended-load formula calculates only the net transport rate due to the limit of available data. The formula has been tested using the single-sized and multiple-sized sediment transport data sets. The formula provides reliable predictions in both fractional and total transport rates. More than half of the test cases are predicted within a factor of 2 of the measured values, and more than 90% of the cases are within a factor of 5. This accuracy is generally reasonable for sediment transport under current and waves, which is very complex and little understood.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Imam Setiadi ◽  
Dinda Rita K. Hartaja

Selection of the appropriate composition desalination units can be done with a variety of method approaches, one of the method is the Analytic Hierarchy Process. In determining the desalination unit with AHP method to consider is setting a goal, an alternative criteria and pairwise comparison. Research for the determination of the exact composition of the desalination unit in order to achieve sustainable drinking water suppy in coastal areas and small islands has been conducted. The results of the study are as follows, the energy demand of 50.83%, operator costs of 26.64%, maintenance costs of 14.13% and chemical requirement 8.4%. For an alternative composition desalination unit of RO 10 m3 / day is the best alternative composition with value of 59.61%, the composition of the next alternative is RO 20 m3/ day of 30.40% and the last alternative of the desalination unit composition is RO 120 m3/ day of 09.99%.Key words : Desalination, Mukti Stage Flash Composition, AHP


Sign in / Sign up

Export Citation Format

Share Document