scholarly journals Development of High Gain Circularly Polarized Antenna Array for RF Renewable Energy

2018 ◽  
Vol 7 (2.29) ◽  
pp. 1033
Author(s):  
Chia Chao Kang ◽  
Fatin Ayuni ◽  
Chia Yang Kang

RF energy has become very attractive in the engineering and scientist field for green substainbility. A novel high gain circularly polarize antenna array for RF renewable energy is presented in this paper. The antenna structure was investigated using full wave electromagnetic field analysis. Finally, the entire structure of the antenna array was fabricated and measured. A comparison between simulated and measured results has been observed. The results show that high gain 5.0dBi at 956MHz had been achieved for circularly polarize antenna array and the works concludes that the investigation of high gain antenna system was successful and it can use as an alternatif sources for renewable green energy. The antenna structure that presented is also an important part of the IoT and 5G development.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lu Bai ◽  
Chenglie Du

Based on multisource wireless signal fusion technology, the autonomous positioning systems of robots have been widely employed. How to design a compact compostable antenna array for indoor robot positioning is still a problem. In this study, we proposed a compact ultrathin antenna unit that effectively reduces the mutual coupling between any adjacent units, while covering most of the existing communication bands, including 2G/3G/4G/Wi-Fi, which will greatly reduce the size of the positioning antenna array. The proposed antenna system has been employed for positioning purpose with high-gain, wide-frequency band and limited size. It necessarily improves the accuracy of positioning signal from various unknown sources and finally accomplishes its autonomous positioning function.


2011 ◽  
Vol 57 (1) ◽  
pp. 91-96
Author(s):  
Giennadij Czawka ◽  
Marek Garbaruk

Matrix Analysis and Pulse Transmission of Antenna Array for MIMO UWB Systems This paper presents a theoretical matrix analysis of antenna structure consisting of two double-element planar antennas for ultra-wideband (UWB) application in 2*2 MIMO indoor communication systems. The structure and characteristics of pla-nar two-element UWB antenna are presented. Two matrix models of MIMO antenna system are represented in the paper. A stan-dard MIMO signal transmission matrix without taking into con-sideration the coupling between antennas is described. A new ap-proach to a full electromagnetic analysis based on the scattering matrix of the MIMO spatial antenna array is proposed. Func-tional power parameters for the whole MIMO UWB transmit-receive antenna structure are introduced. Results of computer si-mulations of different matrices describing a MIMO antenna sys-tem and the transmission propagation pulses are presented.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 675 ◽  
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Abinash Gaya ◽  
Hasliza A. Rahim

In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order T E δ 15 x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50   Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Maria Lucia Scarpello ◽  
Luigi Vallozzi ◽  
Hendrik Rogier ◽  
Dries Vande Ginste

A novel high-gain textile antenna array system, fully integrated into a rescue-worker’s vest and operating in the Industrial, Scientific, and Medical wireless band (2.4–2.4835 GHz), is presented. The system comprises an array consisting of four tip-truncated equilateral triangular microstrip patch antennas (ETMPAs), a power divider, line stretchers, and coaxial cables. The array is vertically positioned on the human torso to produce a narrow beam in elevation, as such reducing fading and allowing to steer the maximum gain in a small angular sector centered around the broadside direction. To allow simple low-cost beam steering, we specifically minimize mutual coupling by using a relative large distance between the patches and by selecting the ETMPA element as the most suited topology from three potential patch geometries. Moreover, we investigate the stability of return loss and mutual coupling characteristics under different relative humidity conditions, when bending the array, when placing the system on-body, and when covering it by different textile layers. Reflection coefficient and gain patterns are simulated and measured for the antenna system in free space and placed on the human body.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2263
Author(s):  
Enrique A. Navarro ◽  
Jorge A. Portí ◽  
Alfonso Salinas ◽  
Enrique Navarro-Modesto ◽  
Sergio Toledo-Redondo ◽  
...  

The word radome is a contraction of radar and dome. The function of radomes is to protect antennas from atmospheric agents. Radomes are closed structures that protect the antennas from environmental factors such as wind, rain, ice, sand, and ultraviolet rays, among others. The radomes are passive structures that introduce return losses, and whose proper design would relax the requirement of complex front-end elements such as amplifiers. The radome consists mostly in a thin dielectric curved shape cover and sometimes needs to be tuned using metal inserts to cancel the capacitive performance of the dielectric. Radomes are in the near field region of the antennas and a full wave analysis of the antenna with the radome is the best approach to analyze its performance. A major numerical problem is the full wave modeling of a large radome-antenna-array system, as optimization of the radome parameters minimize return losses. In the present work, the finite difference time domain (FDTD) combined with a genetic algorithm is used to find the optimal radome for a large radome-antenna-array system. FDTD uses general curvilinear coordinates and sub-cell features as a thin dielectric slab approach and a thin wire approach. Both approximations are generally required if a problem of practical electrical size is to be solved using a manageable number of cells and time steps in FDTD inside a repetitive optimization loop. These approaches are used in the full wave analysis of a large array of crossed dipoles covered with a thin and cylindrical dielectric radome. The radome dielectric has a thickness of ~λ/10 at its central operating frequency. To reduce return loss a thin helical wire is introduced in the radome, whose diameter is ~0.0017λ and the spacing between each turn is ~0.3λ. The genetic algorithm was implemented to find the best parameters to minimize return losses. The inclusion of a helical wire reduces return losses by ~10 dB, however some minor changes of radiation pattern could distort the performance of the whole radome-array-antenna system. A further analysis shows that desired specifications of the system are preserved.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document