scholarly journals Internet of things and its applications

2018 ◽  
Vol 7 (2.7) ◽  
pp. 422
Author(s):  
Y Shanmukha Sai ◽  
K Kiran Kumar

IOT is creating impeccable things by improving the performance of system in the field of communications in many technical applications in expedite manner and taken the system performance to next level. implementing IOT in today's world out do's the response time of the system to the normal system response in R&D applications. this paper depicts the challenges and the problems in various domains and gave the solution by imbibing IOT Technology by standardizing the system processes to meet the industrial as well as domestic needs. 

2021 ◽  
Vol 3 (1) ◽  
pp. 21-35
Author(s):  
Hadish Habte Tesfamikael ◽  
Adam Fray ◽  
Israel Mengsteab ◽  
Adonay Semere ◽  
Zebib Amanuel

In this fast-paced world, it is very challenging for the elderly and disabled population to move independently to their desire places at any convenient time. Fortunately, some of the people have good eyesight and physically strong to take care of their survival. Nevertheless, Electric wheelchair (EWC) can provide them a better lifestyle with commendable confidence. At the same time, the hand, head and voice recognition-based EWC meet many limitations. Despite, the eye-tracking-based EWC provides a better smartness in their lifestyle. This research article discusses better accuracy achievement and minimizes the delay response time in the proposed system. The proposed eye-tracking EWC is differed from another existing system with good validation parameters of the controller and it introduces edge detection to identify the eye pupil position in the face. The proposed method includes a PID controller to control the DC motor, which in turn controls the rotation of wheel in EWC. This research article is mainly focused on the cost-effectiveness and improvement in the system performance. The display system is mounted in front of the sitting position of EWC users. The camera captures eye pupil position and it determines the direction of the EWC movement by controlling DC motor with the help of a PID controller. When derivative (D) control is used in the proposed system, the system response is quite faster and it reduces the delay time between the user and system reaction. This pupil of eye position is determined by a canny edge detector, which provides good results when compared with other edge detection approaches. Object detection in front of the EWC is an added advantage of the proposed system. The proposed article integrates all the activities and measures the system performance. The proposed model achieves an accuracy of about 90% and response time is least compared with the existing methods.


2021 ◽  
pp. 1-13
Author(s):  
Dayong Guo ◽  
Qing Hu

Aiming at the problems of low precision, slow data transmission speed and long response time of silk quality and temperature control in tobacco intelligent production line, a multi-index testing system is designed. According to the characteristics of PROFIBUS fieldbus technology, combined with PROFIBUS transmission technology, a factory level information network is formed with PROFIBUS-DP as the exchange mode. Based on the PROFIBUS technology, the dual redundancy structure of control ring network and management information ring network is adopted, and the whole network architecture is constructed by logic layering. From the point of view of building enterprise MES system, it locates real-time production monitoring, production task receiving and production line related data collection, integrates equipment control layer, centralized monitoring layer and production management layer, and designs system function structure. The functional structure of the system, and the establishment of a number of data tables, to achieve a tobacco intelligent production line silk quality detection system design. Experimental results show that this method can effectively speed up the data transmission speed and shorten the system response time.


1985 ◽  
Vol 21 (4) ◽  
pp. 211-217 ◽  
Author(s):  
Akinori KOMATSUBARA ◽  
Yoshimi YOKOMIZO ◽  
Sakae YAMAMOTO ◽  
Kageyu NORO

Author(s):  
Suryadiputra Liawatimena

The aim of this study is to use Radio Frequency technology to facilitate human activities, especially used in Busway entrances. In this research methodologies used include field survey to the BP Transjakarta; literature study by reading manuals, text books, journals, and articles on the Internet, and conduct laboratory experiments on the Bina Nusantara University Hardware Research Laboratory in designing and making the minimum system . Based on the results of an experiment and taking data on the minimum system, it can be concluded in general the performance of the system is running well, but the response time was not optimal. Some improvements to the system needed to improve system performance, such as raising response time, improved data security, and online systems. 


2018 ◽  
Vol 10 (3) ◽  
pp. 113
Author(s):  
Achmad Auliyaa Zulfikri ◽  
Doan Perdana ◽  
Gustommy Bisono

On this research,Internet of Things (IoT) as an advanced technology is used to monitor the height of trash from a trash can in order to give notification whether the height of trash is already reach the maximum limit or not yet.To support those needs,we used NodeMCU as microcontroller,ultrasonic sensor,MQTT as IoT protocol,and also Android application to show the data.After we did the system performance test,we got the biggest result of end-to-end delay which is 2.06875 seconds when the packet delivery is set to 1000 ms with 3 active nodes and the smallest result which is 0.26055 seconds when the packet delivery is set to 100 ms with 1 active mode.The biggest result of throughput is 597.17 Bytes/s when the packet delivery is set to 100 ms with 1 active mode and the smallest result is 75.86 Bytes/s when the packet delivery is set to 1000 ms with 3 active nodes.The biggest result of availability and reliability is 99.905% when the packet delivery is set to 1000 ms and the smallest result is 99.833% when the packet delivery is set to 100 ms.


Author(s):  
Gloria Calhoun ◽  
Heath Ruff ◽  
Elizabeth Frost ◽  
Sarah Bowman ◽  
Jessica Bartik ◽  
...  

A key challenge facing automation designers is how to achieve an ideal balance of system automation with human interaction for optimal operator decision making and system performance. A performance-based adaptive automation algorithm was evaluated with two versus six monitored task types. Results illustrate the importance of level of automation choices in control schemes.


Author(s):  
Bill Karakostas

To improve the overall impact of the Internet of Things (IoT), intelligent capabilities must be developed at the edge of the IoT ‘Cloud.' ‘Smart' IoT objects must not only communicate with their environment, but also use embedded knowledge to interpret signals, and by making inferences augment their knowledge of their own state and that of their environment. Thus, intelligent IoT objects must improve their capabilities to make autonomous decisions without reliance to external computing infrastructure. In this chapter, we illustrate the concept of smart autonomous logistic objects with a proof of concept prototype built using an embedded version of the Prolog language, running on a Raspberry Pi credit-card-sized single-board computer to which an RFID reader is attached. The intelligent object is combining the RFID readings from its environment with embedded knowledge to infer new knowledge about its status. We test the system performance in a simulated environment consisting of logistics objects.


Sign in / Sign up

Export Citation Format

Share Document