scholarly journals Assessment of different turbulence models in simulating axisymmetric flow in suddenly expanded nozzles

2018 ◽  
Vol 7 (3.29) ◽  
pp. 243
Author(s):  
Sher Afghan Khan ◽  
Mir Owais Ali ◽  
Miah Mohammed Riyadh ◽  
Zahid Hossen ◽  
Nafis Mahdi Arefin

A numerical simulation was carried out to compare various turbulence models simulating axisymmetric nozzle flow past suddenly expanded ducts. The simulations were done for L/D = 10. The convergent-divergent nozzle has been modeled and simulated using the turbulence models: The Standard k-ε model, The Standard k-ω model and The SST k-ω model. Numerical simulations were done for Mach numbers 1.87, 2.2, and 2.58 and the nozzles were operated for NPRs in the range from 3 to 11. From the numerical analysis it is apparent that for a given Mach number and effect of NPR will result in maximum gain or loss of pressure. Numerical results are in good agreement with the experimental results.  

2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


2015 ◽  
Vol 29 (18) ◽  
pp. 1550087 ◽  
Author(s):  
Furkan Dincer ◽  
Muharrem Karaaslan ◽  
Emin Unal ◽  
Oguzhan Akgol ◽  
Cumali Sabah

We demonstrate numerically and experimentally chiral metamaterials (MTMs) based on gammadion-bilayer cross-wires that uniaxially create giant optical activity and tunable circular dichroism as a result of the dynamic design. In addition, the suggested structure gives high negative refractive index due to the large chirality in order to obtain an efficient polarization converter. We also present a numerical analysis in order to show the additional features of the proposed chiral MTM in detail. Therefore, a MTM sensor application of the proposed chiral MTM is introduced and discussed. The presented chiral designs offer a much simpler geometry and more efficient outlines. The experimental results are in a good agreement with the numerical simulation. It can be seen from the results that, the suggested chiral MTM can be used as a polarization converter, sensor, etc. for several frequency regimes.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


2019 ◽  
Vol 9 (20) ◽  
pp. 4289 ◽  
Author(s):  
Sangki Park

In South Korea, the construction of new multi-unit residential structures has been continuously increasing in order to accommodate multiple households in single structures. However, the presence of walls and floors shared with neighbors makes these structures exceptionally vulnerable to floor noise transmission when the noise of everyday life occurs. In particular, South Korea has many social problems associated with such floor noise, which require the utmost attention and immediate resolution. In this study, a 17-story structure was selected as a test structure. Field measurements were carried out. A numerical model for the 17-story structure was developed in order to perform a vibro-acoustic analysis. The validation of the numerical model comparing with the field measurement data results shows a good agreement. Finally, it is concluded that numerical analysis can be applied to resolve floor noise problems arising in multi-unit residential structures.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
J. Humberto Pérez-Cruz ◽  
Jacobo Marcos Allende Peña ◽  
Christian Nwachioma ◽  
Jose de Jesus Rubio ◽  
Jaime Pacheco ◽  
...  

The objective of this paper is to estimate the unmeasurable variables of a multistable chaotic system using a Luenberger-like observer. First, the observability of the chaotic system is analyzed. Next, a Lipschitz constant is determined on the attractor of this system. Then, the methodology proposed by Raghavan and the result proposed by Thau are used to try to find an observer. Both attempts are unsuccessful. In spite of this, a Luenberger-like observer can still be used based on a proposed gain. The performance of this observer is tested by numerical simulation showing the convergence to zero of the estimation error. Finally, the chaotic system and its observer are implemented using 32-bit microcontrollers. The experimental results confirm good agreement between the responses of the implemented and simulated observers.


2013 ◽  
Vol 833 ◽  
pp. 154-158
Author(s):  
Xiao Yang Wan ◽  
Jun Liang ◽  
Guo Dong Fang ◽  
Ling Ling Wang

The present work examines the pre-indented crack propagation in ZrB2-SiC-AlN ceramics subjected to thermal shock under different temperature differences. A cohesive force model is applied according to the shape and characteristics of the crack in the indentation - quenching experiments. A dimensionless parameter is introduced to characterize the effect of depth on thermal stress which considers the cracks propagate along both the surface and the depth direction. The modified numerical results are 11.3%, 16.6%, 20.8% 27.1% and 64.6% at the quenching temperature differences of 240°C, 280°C, 320°C and 360°C, respectively, which are in good agreement with the experimental results.


2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


Sign in / Sign up

Export Citation Format

Share Document