scholarly journals A Review on Characterization of Sediments for Green Bricks Production

2018 ◽  
Vol 7 (4.35) ◽  
pp. 41
Author(s):  
L. W. Ean ◽  
M. A. Malek ◽  
Bashar S. Mohammed ◽  
Chao-Wei Tang ◽  
P. X. H. Bong

Accumulation of dredged sediment has raised environmental concern in various countries. Recycling of sediment into bricks is a viable solution to the environmental pollution. Concerning to the utilization of sediment in bricks, this study reviews the needs of characterization on sediment and methods of producing sediment bricks. Particle size distribution was found to be the key criteria for characterization of sediment. Sizes of particles determined the function of the sediments in the bricks. In spite of that, leachability of heavy metals is another important aspect for contaminated sediment. Cementing bricks used cementing materials as the stabilization agent to the heavy metals. It is necessary to conduct leaching test for the end-product of the sediment to ensure the heavy metals leached are within the regulatory limits. In conclusion, method of producing sediment bricks may vary due to the various characteristics of sediment for a promising environmental friendly production.  

Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 200 ◽  
Author(s):  
Mizraim Flores ◽  
Iván Reyes ◽  
Elia Palacios ◽  
Francisco Patiño ◽  
Julio Juárez ◽  
...  

Jarosites are widely used in the hydrometallurgical industry of zinc to eliminate iron and other impurities contained in the concentrates. However, these compounds can also incorporate elements of significant environmental concern such as Tl+, Hg2+, Pb2+, Cd2+, Cr(VI), and As(V). In this work, the characterization of a synthetic mercury jarosite and its thermal decomposition kinetics are reported. XRD and FTIR analyses confirm that a mercury jarosite—Hg0.40(H3O)0.2]Fe2.71(SO4)2.17(OH)4.79(H2O)0.44—was successfully synthesized. Four mass loss events were observed by thermogravimetric analysis at 290 °C, 365 °C, 543 °C, and 665 °C. The third event corresponds to mercury decomposition into mercury oxide, whilst the forth is related to the jarosite to hematite transformation determined by X-ray diffraction starting at around 600 °C. According to the kinetic parameters (activation energy and frequency factor) of the thermal decomposition process, the fourth stage required the highest energy (Ea = 234.7 kJ∙mol−1), which corresponds to elimination of sulfur and oxygen from the jarosite lattice. Results show that jarosite-type compounds have the capability to incorporate heavy metals into their structure, retaining them even at high temperatures. Therefore, they can be used as a remediation strategy for heavy metals, such as mercury and others elements of environmental concern.


Author(s):  
Nurul Izzah Pasi ◽  
Marline Abdassah Bratadireja ◽  
Anis Yohana Chaerunnisa

Kaolin is one of the abundant clay minerals on earth which has been widely used in various industries. kaolin as a raw material in drugs manufacturing must comply several requirements in Pharmacopoeia such as not exceeding the heavy metal content limits. In this study the analysis of heavy metal content (Pb, Sn, and As) was carried out on natural kaolin obtained from 3 different locations in Belitung regency. Testing of the brightness and particle size is also carried out to increase the value of kaolin as a pharmaceutical excipient. The highest recovery from kaolin was obtained in sample 3 which was 67.78%, while kaolin 1 and 2 which was 66.54, and 64.20%. Based on the results of heavy metal testing it is known that kaolin 1, 2, and 3 have a Pb content of 55.2, 0.0458 and 44.0 ppm, and As content of 1.05, 78.3, and 0.761 ppm. Whereas the Sn mean metal is only found in kaolin 2 which is 0.0034. White degree test results show that kaolin 1, 2 and 3 have a high brightness, namely 92.94%, 93.00%, 91.16%. From the results of particle size testing shows that all kaolin samples have size <2 μm.Keywords: Characterization of Minerals, Heavy Metals, Kaolin


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Sign in / Sign up

Export Citation Format

Share Document