scholarly journals Effect of Solution pH to Indigosol Blue Adsorption on Humic Acid Isolated from Kalimantan Peat Oil

2019 ◽  
Vol 2 ◽  
pp. 193-195
Author(s):  
Gita Citra Santi ◽  
Maya Rahmayanti

There has been study on the isolated of humic acid and its interaction with indigosol blue. The objectives of study were to isolate humic acid from Kalimantan peat soil and to study pH optimation indigosol blue on humic acid. Isolated of humic acid using alkali extraction method with NaOH as solvent and precipitated with HCl. Humic acid was characterized using FTIR spectroscopy to determine functional group. Based on the result FTIR characterization, adsorption of humic acid was found in the wave number 3140,15 cm-1 which show the vibration of -OH, 2924,09 cm-1  show vibration of aliphatic  -CH, 1705 cm-1  show vibration -C = O of COOH, 1627,92 cm-1 show vibration of C=C aromatic and 1226,73 cm-1 indicate of -OH and CO from -COOH. Based on the result of study, pH optimation of indigosol blue at pH 5.

2020 ◽  
Vol 8 (2) ◽  
pp. 77-83
Author(s):  
Maya Rahmayanti ◽  
Guliston Abdillah ◽  
Sri Juari Santosa ◽  
Sutarno Sutarno

Humic acid modifying magnetite particles (Mag-HA) were developed for recovery of gold from chloride solution (HAuCl4). The Mag-HA particles were prepared by co-precipitation procedure with Fe(III) and Fe(II) chloride salts, sodium hydroxide, and humic acid. FTIR characterization for Mag-HA after modification indicated the presence of the specific absorption for functional groups of humic acid and Fe-O bonds, though with lower intensity. The Mag-HA particles exhibited a typical superparamagnetic characteristic with a saturation magnetization of 66.99 emu/g. The Mag-HA particles were applied for AuCl4- adsorption and results showed that the optimum adsorption of [AuCl4]- onto Mag-HA was found at pH 3. The adsorption kinetics can be described by a pseudo-second order equation and the adsorption isotherm of the Mag-HA particles agreed well with Langmuir adsorption equation. The maximum adsorbed amount of [AuCl4]- was 0.62 mmol/g and the XRD analysis confirms that the adsorption of Au(III) by Mag-HA was accompanied by the formation of elemental gold.


2020 ◽  
Vol 9 (2) ◽  
pp. 81-87
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno Sutarno

Sonochemical technology is a technology that involves ultrasonic waves in chemical reactions. In this study, humic acid isolated from peat soil has been successfully modified with magnetite (HA-Fe3O4) using sonochemical technology. Characterization of the physical and chemical properties of HA-Fe3O4 was carried out using FTIR, XRD, SEM and VSM. HA-Fe3O4 was used for recovery of gold from simulated gold waste (HAuCl4). FTIR characterization showed that the interaction between HA and Fe3O4 was through hydrogen bonds. The crystal size of HA-Fe3O4 using the Debye-Scherrer equation based on the XRD diffractogram was 12.4 nm. The saturation magnetization value of HA-Fe3O4 obtained was 52.80 emu/g. Adsorption studies at various pH showed that HA-Fe3O4 has been successful in recovering of gold from simulated gold waste. The % recovery of gold was 99%. Gold recovery occurs through the adsorption process followed by reduction of Au (III) to Au(0).


2021 ◽  
Vol 6 ◽  
pp. 100077
Author(s):  
Jianmei Zou ◽  
Huichun Zhang ◽  
Dongbei Yue ◽  
Jianzhi Huang

Author(s):  
Xueqiang Zhu ◽  
Lai Zhou ◽  
Yuncong Li ◽  
Baoping Han ◽  
Qiyan Feng

Cost-effective zero valent iron (ZVI)-based bimetallic particles are a novel and promising technology for contaminant removal. The objective of this study was to evaluate the effectiveness of CCl4 removal from aqueous solution using microscale Ag/Fe bimetallic particles which were prepared by depositing Ag on millimeter-scale sponge ZVI particles. Kinetics of CCl4 degradation, the effect of Ag loading, the Ag/Fe dosage, initial solution pH, and humic acid on degradation efficiency were investigated. Ag deposited on ZVI promoted the CCl4 degradation efficiency and rate. The CCl4 degradation resulted from the indirect catalytic reduction of absorbed atomic hydrogen and the direct reduction on the ZVI surface. The CCl4 degradation by Ag/Fe particles was divided into slow reaction stage and accelerated reaction stage, and both stages were in accordance with the pseudo-first-order reaction kinetics. The degradation rate of CCl4 in the accelerated reaction stage was 2.29–5.57-fold faster than that in the slow reaction stage. The maximum degradation efficiency was obtained for 0.2 wt.% Ag loading. The degradation efficiency increased with increasing Ag/Fe dosage. The optimal pH for CCl4 degradation by Ag/Fe was about 6. The presence of humic acid had an adverse effect on CCl4 removal.


2003 ◽  
Vol 47 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Duan ◽  
N.J.D. Graham ◽  
F. Wilson

The coagulation of a model seawater-humic acid solution with a hydrolysis metal salt (FeCl3) has been studied by monitoring floc size, solution pH, and zeta potential. The kinetic features of the orthokinetic coagulation have been demonstrated in relation to coagulant dosages, solution pH and zeta potential. Humic acid removal and floc charge reduction increased with coagulant dosage. Adjusting the solution pH prior to coagulation had a substantial effect on the treatment performance. By pH adjustment to pH 6, the greatest humic acid removal (by coagulation and subsequent membrane filtration) and the largest floc size was achieved at a FeCl3 dosage of 200 mmol l−1. It is believed that the coagulation is characterised by competition between OH- ions and humic acid for ferric ions in the co-precipitation process. In acidic pH, where the concentration of OH- ions is low, humic acid molecules may compete more favourably for bonding sites in the co-precipitation, which leads to a more compact precipitation and a higher overall humic acid removal.


2013 ◽  
Vol 864-867 ◽  
pp. 1509-1512
Author(s):  
Xue Mei Zhang ◽  
Yan Zhang ◽  
Di Fan

This paper presents the adsorption behaviors of humic acid (HA) on coal ashes and powdered activated carbons (PACs). A bituminous coal, with or without calcium-loading, was used as a feedstock for coal ash preparation. The working solution of HA with a concentration of 20 mg/L was used in all adsorption tests. The results showed that calcium-enriched coal ash (CECA) gave rise to the removal rate of HA as high as 84.05%, much higher than those of raw coal ash (RCA) and PACs. The impacts of solution pH and adsorbent dosage on HA adsorption capacity were also investigated. It was found that lower pH facilitated to the removal of HA from aqueous solution by means of CECA, and the optimal CECA dosage was about 1.0g/L at pH 7.00. The data obtained in this study suggested that calcium-enriched coal ash could be useful and cost-effective in the treatment of wastewaters containing HA-like organic macro-molecules.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nurhadini . ◽  
Verry Andre Fabiani ◽  
Megawati Ayu Putri ◽  
Iin Lestari

Penggunaan polimer ramah lingkungan merupakan tantangan bagi industri baterai ion litium saat ini dikarenakan sifatnya yang mudah terbiodegradasi menjadi keunggulan polimer alam seperti kitosan dengan bahan baku dari alam yang melimpah. Komposisi polimer elektrolit dalam penelitian ini terdiri atas kitosan, PVA, gliserol yang didopan dengan LiClO4. Penelitian ini bertujuan untuk menganalisis sifat konduktivitas dan termal dari polimer elektrolit kitosan/PVA/gliserol/LiClO4. Pembuatan polimer elektrolit ini menggunakan metode casting. Peningkatan massa kitosan dalam komposisi polimer elektrolit menyebabkan adanya peningkatan intensitas pada bilangan gelombang 1718 cm-1 dan peningkatan intensitas serapan pada bilngangan gelombang 1271 cm-1 dengan masing-masing puncak serapan tersebut adalah gugus fungsi dari C=O dan gugus fungsi C-O.  Berdasarkan data konduktivitas menunjukkan bahwa komposisi 70/30/20/20 (kitosan /PVA/Gliserol/LiClO4) memiliki konduktivitas tertinggi sebesar 4,8 x 10-5S/cm. Hasil kurva TGA menunjukkan stabilitas termal komposisi polimer elektrolit hingga 210oC dan peningkatan jumlah kitosan dalam polimer elektrolit menurunkan kestabilan termal. Polimer elektrolit dari kitosan/PVA/Gliserol/LiClO4 dapat diaplikasikan untuk baterai ion litium berdasarkan analisis konduktivitas ionik dan kestabilan termal. ABSTRACT The use of environmentally friendly polymers is a challenge for the lithium-ion batteries industry today because its biodegradable nature is an advantage of natural polymers such as chitosan with abundant raw materials from nature. The polymer electrolyte composition in this study consisted of chitosan, PVA, glycerol doped with LiClO4. This study aims to analyze the conductivity and thermal properties of the polymer electrolyte chitosan/PVA/Glycerol/LiClO4. The polymer electrolyte was made using a casting method. The increasing of the chitosan mass in the polymer electrolyte composition led to an increase in intensity at the wave number 1718 cm-1 and an increase in absorption intensity at the wavenumber of 1271 cm-1 with absorption peaks being a functional group of C=O and C-O respectively. Based on the conductivity data, it showed that the composition of 70/30/20/20 (chitosan/PVA/Glycerol/LiClO4) had the highest conductivity of 4.8 x 10-5S/cm. The results of the TGA curve illustrated that polymer electrolyte had thermal stability until 210oC and the increasing amount of chitosan of polymer electrolyte decreased thermal stability. Polymer electrolyte chitosan


2017 ◽  
Vol 17 (1) ◽  
pp. 95 ◽  
Author(s):  
Sri Sudiono ◽  
Mustika Yuniarti ◽  
Dwi Siswanta ◽  
Eko Sri Kunarti ◽  
Triyono Triyono ◽  
...  

Humic acid (HA) extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS) has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH) groups and reduction by the action of the hydroxyl (–OH) groups to gold (Au) metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w) and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.


ACS Omega ◽  
2019 ◽  
Vol 4 (5) ◽  
pp. 8559-8567 ◽  
Author(s):  
Azizul Hakim ◽  
Tomoharu Suzuki ◽  
Motoyoshi Kobayashi

Sign in / Sign up

Export Citation Format

Share Document