scholarly journals PO-057 Motor Functional Connectivity Analysis of Brain Control Network on High Level Athletes with fMRI Research

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Jiaxin Li ◽  
Chengbo Du ◽  
Mengjiao Chen ◽  
Ke Li ◽  
Jiao Xue ◽  
...  

Objective The nervous system is the control center that performs the function of the human body, including each nucleus of the cerebral cortex and basal ganglia, which can control the motion of the body through three pathways-direct pathway, indirect pathway and hyperdirect pathway. Long-term physical exercise can effectively improve the human respiratory and circulatory system function indicators and promote the development of nervous system.In order to discuss the mechanisms of the high level athletes' control of the brain function network and provide the experimental basis for the study of the motor control of the central nervous system, this research collects the activation images of the cortex and basal ganglia nuclei of the ordinary college students and the high level athletes and analyzes the function connection coefficient between the groups. Methods The subjects were 15 high level athletes and 15 ordinary college students. the changes of the brain structure and DTI fiber in the state of quiet and fatigue were collected by the functional magnetic resonance imaging (fMRI). Matlab software was used to compare images and data and to calculate the correlation coefficient between the related nuclear groups. Results (1) Compared with ordinary college students, the functional connectivity coefficient between the left thalamus and the left hippocampus is different in high level athletes (P<0.05). (2) The high level athletes’ functional connectivity in the left premotor area-right premotor area, left premotor area-right striatum, right premotor area-left central buckle in supplementary motor area, right premotor area-right central buckle in supplementary motor area, right premotor area-right striatum and right premotor area-left cerebellum were changed significantly after exercise fatigue (P<0.05). Conclusions The plasticity of brain function can be affected by long-term exercise training, which depends on sport training level. After exercise fatigue, the network connection system and nerve projection density change between cortical and subcortical nuclei, suggesting that exercise fatigue will change the functional connection between parts of the brain.(NSFC:31401018 SKXJX2014014).

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Jiaxin Cui ◽  
Li Wang ◽  
Naiyi Wang ◽  
...  

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.


Meditation refers to a state of mind of relaxation and concentration, where generally the mind and body is at rest. The process of meditation reflects the state of the brain which is distinct from sleep or typical wakeful states of consciousness. Meditative practices usually involve regulation of emotions and monitoring of attention. Over the past decade there has been a tremendous increase in an interest to study the neural mechanisms involved in meditative practices. It could also be beneficial to explore if the effect of meditation is altered by the number of years of meditation practice. Functional Magnetic Resonance Imaging (fMRI) is a very useful imaging technique which can be used to perform this analysis due to its inherent benefits, mainly it being a non-invasive technique. Functional activation and connectivity analysis can be performed on the fMRI data to find the active regions and the connectivity in the brain regions. Functional connectivity is defined as a simple temporal correlation between anatomically separate, active neural regions. Functional connectivity gives the statistical dependencies between regional time series. It is a statistical concept and is quantified using metrics like Correlation. In this study, a comparison is made between functional connectivity in the brain regions of long term meditation practitioners (LTP) and short-term meditation practitioners (STP) to see the differences and similarities in the connectivity patterns. From the analysis, it is evident that in fact there is a difference in connectivity between long term and short term practitioners and hence continuous practice of meditation can have long term effects.


2020 ◽  
Vol 133 (2) ◽  
pp. 392-402 ◽  
Author(s):  
Victoria L. Morgan ◽  
Baxter P. Rogers ◽  
Hernán F. J. González ◽  
Sarah E. Goodale ◽  
Dario J. Englot

OBJECTIVESeizure outcome after mesial temporal lobe epilepsy (mTLE) surgery is complex and diverse, even across patients with homogeneous presurgical clinical profiles. The authors hypothesized that this is due in part to variations in network connectivity across the brain before and after surgery. Although presurgical network connectivity has been previously characterized in these patients, the objective of this study was to characterize presurgical to postsurgical functional network connectivity changes across the brain after mTLE surgery.METHODSTwenty patients with drug-refractory unilateral mTLE (5 left side, 10 female, age 39.3 ± 13.5 years) who underwent either selective amygdalohippocampectomy (n = 13) or temporal lobectomy (n = 7) were included in the study. Presurgical and postsurgical (36.6 ± 14.3 months after surgery) functional connectivity (FC) was measured with 3-T MRI and compared with findings in age-matched healthy controls (n = 44, 21 female, age 39.3 ± 14.3 years). Postsurgical connectivity changes were then related to seizure outcome, type of surgery, and presurgical disease parameters.RESULTSThe results demonstrated significant decreases of FC from control group values across the brain after surgery that were not present before surgery, including many contralateral hippocampal connections distal to the surgical site. Postsurgical impairment of contralateral precuneus to ipsilateral occipital connectivity was associated with seizure recurrence. Presurgical impairment of the contralateral precuneus to contralateral temporal lobe connectivity was associated with those who underwent selective amygdalohippocampectomy compared to those who had temporal lobectomy. Finally, changes in thalamic connectivity after surgery were linearly related to duration of epilepsy and frequency of consciousness-impairing seizures prior to surgery.CONCLUSIONSThe widespread contralateral hippocampal FC changes after surgery may be a reflection of an ongoing epileptogenic progression that has been altered by the surgery, rather than a direct result of the surgery itself. This network evolution may contribute to long-term seizure outcome. Therefore, the combination of presurgical network mapping with the understanding of the dynamic effects of surgery on the networks may ultimately be used to create predictors of the likelihood of long-term seizure recurrence in individual patients after mTLE surgery.


2010 ◽  
Vol 391 (4) ◽  
Author(s):  
Shigetaka Yoshida

Abstract Klk8 is a tryptic serine protease with limited substrate specificity. Klk8 mRNA is expressed in many developing organs, whereas its expression is confined to limited regions, including the hippocampus, in adults. In the hippocampus, Klk8 is involved in activity-dependent synaptic changes such as long-term potentiation, which was found to be suppressed in Klk8 knockout (KO) mice. Oligodendrocytes only expressed Klk8 mRNA after injury to the central nervous system. The epidermis of the skin is one of the tissues that exhibits a high level of KLK8 expression. Klk8 might be involved in desquamation through the degradation of adhesive molecules that connect layers of the epidermis. Klk8 might thus be involved in tissue development and rearrangement.


2012 ◽  
Vol 10 (4) ◽  
pp. 42-48 ◽  
Author(s):  
Inessa Vladimirovna Karpova ◽  
Vladimir Vladimirovich Mikheyev ◽  
Yevgeniy Rudolfovich Bychkov ◽  
Andrey Andreyevich Lebedev ◽  
Petr Dmitriyevich Shabanov

The effects of long-term social isolation on the content and metabolism of dopamine and serotonin systems were studied in symmetrical brain structures of BALB/c male mice. With HPLC the contents of dopamine (DA), serotonin (5-HT) and their metabolites dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5-HIAA) were measured in the cortex, hippocampus and striatum of both the right and the left hemispheres of the brain in mice reared in groups and social isolation. The isolated mice were characterized by reduced level of DA in the left striatum and elevated level of 5-HIAA and ratio 5-HIAA/5-HT in the right striatum. In the hippocampus of isolated mice, the activation of both DA-ergic and 5-HT-ergic systems was observed, that is the high level of DA and DOPAC in the left hippocampus and the elevated level of 5-HT in both hemispheres and of 5-HIAA in the right hippocampus were registered. On the other hand, the reduction of both DA-ergic and 5-HT-ergic systems activity was shown to be in the right hemisphere. The decreased concentration of DOPAC and ratio DOPAC/DA in the right cortex were observed as well. As to 5-HT-ergic system, the reduced level of 5-HT in the both cortex of the hemispheres as well as 5-HIAA in the right hemisphere of isolated mice was determined. The phenomenon of interhemispheric asymmetry was revealed in the hippocampus only, which was characterized by the increased DA-ergic activity in the left hippocampus but not in the striatum and the cortex.


2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.


2021 ◽  
Author(s):  
Derek Martin Smith ◽  
Brian T Kraus ◽  
Ally Dworetsky ◽  
Evan M Gordon ◽  
Caterina Gratton

Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability, to better understand if hubs are (a) relatively conserved across people, (b) locations with malleable connectivity, leading individuals to show variable hub profiles, or (c) artifacts arising from cross-person variation. To answer this question, we compared the locations of hubs and regions of strong idiosyncratic functional connectivity ("variants") in both the Midnight Scan Club and Human Connectome Project datasets. Group hubs defined based on the participation coefficient did not overlap strongly with variants. These hubs have relatively strong similarity across participants and consistent cross-network profiles. Consistency across participants was further improved when participation coefficient hubs were allowed to shift slightly in local position. Thus, our results demonstrate that group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density, which are based on spatial proximity and show higher correspondence to locations of individual variability.


2019 ◽  
Author(s):  
Koen V. Haak ◽  
Christian F. Beckmann

AbstractWhether and how the balance between plasticity and stability varies across the brain is an important open question. Within a processing hierarchy, it is thought that plasticity is increased at higher levels of cortical processing, but direct quantitative comparisons between low- and high-level plasticity have not been made so far. Here, we addressed this issue for the human cortical visual system. By quantifying plasticity as the complement of the heritability of functional connectivity, we demonstrate a non-monotonic relationship between plasticity and hierarchical level, such that plasticity decreases from early to mid-level cortex, and then increases further of the visual hierarchy. This non-monotonic relationship argues against recent theory that the balance between plasticity and stability is governed by the costs of the “coding-catastrophe”, and can be explained by a concurrent decline of short-term adaptation and rise of long-term plasticity up the visual processing hierarchy.


2013 ◽  
Vol 27 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Casey S. Gilmore ◽  
George Fein

Event-related, target stimulus-phase-locked (evoked) brain activity in both the time and time-frequency (TF) domains (the P3b ERP; evoked theta oscillations) has been shown to be reduced in alcoholics. Recently, studies have suggested that there is alcohol-related information in the non-stimulus-phase-locked (induced) theta TF activity. We applied TF analysis to target stimulus event-related EEG recorded during an oddball task from 41 long-term abstinent alcoholics (LTAA) and 74 nonalcoholic controls (NAC) to investigate the relationship between P3b, evoked theta, and induced theta activity. Results showed that an event-related synchronization (ERS) of induced theta (1) was larger in LTAA compared to NAC, and (2) was sensitive to differences between LTAA and NAC groups that was independent of the differences accounted for by P3b amplitude or evoked theta. These findings suggest that increased induced theta ERS may likely be a biomarker for a morbid effect of alcohol abuse on brain function.


Author(s):  
Maja Predojevic ◽  
Aida Salihagic Kadic

Abstract The human brain function is certainly one of the most amazing phenomena known. All behavior is the result of the brain function. The 100 billion nerve cells are the home to our centers of feelings and senses, pleasure and satisfaction; it is where the centers for learning, memory and creative work are located; where laughing and crying areas and the centers of our mind are. Our cognitive functions, such as thinking, speaking or creating works of art and science, all reside within the cerebral cortex. One of the tasks of the neural science is to explain how the brain marshals its millions of individual nerve cells to produce behavior and how these cells are affected by the environment.1 The brain function still remains shrouded in a veil of mystery. But what is known is that over 99 percent of the human neocortex is produced during the fetal period.2 Owing to the employment of state-of-the-art methods and techniques in prenatal investigations, a growing pool of information on the development of the central nervous system (CNS) and behavioral patterns during intrauterine life has been made available. This review outlines these events, along with the development of the fetal sensory system and circadian rhythms, the senses of vision and hearing, fetal learning and memory, and long-term effects of fetal stress on behavior. In brief, this review offers a glimpse of the fascinating world of the intrauterine life.


Sign in / Sign up

Export Citation Format

Share Document