scholarly journals PO-297 Effects of different exercise patterns on TWEAK and its signal in rat skeletal muscle

2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Nianyun Zhang

Objective To study the effects of different exercise patterns on TWEAK and its downstream NF-kB/ MuRF1 in rat skeletal muscle, and to explore the relationship between TWEAK and skeletal muscle metabolism by different exercise interventions. Methods Thirty-two male Sprague-Dawley rats aged 12 weeks were randomly divided into 4 groups: quiet group, high-intensity intermittent swimming group, medium-intensity continuous swimming group, and ladder-moving group, with 8 rats in each group. The exercise group adopted high-intensity intermittent swimming training, medium-intensity continuous swimming training, and ladder training, and trained for 5 days per week for 8 weeks. The right gastrocnemius muscle of the rat was taken the next day after the last training. The expression of TWEAK, NF-KB, MuRF1 proteins was detected by Western Blot. Results 1. The gastrocnemius muscle mass index exercise group was higher than the quiet group. 2. Compared with the quiet group, the expression of TWEAK in the exercise group was reduced, and the reduction in the ladder exercise group was more significant. 3. Compared with the quiet group, the expression of NF-KB and MURF1 was decreased in the exercise group, and the reduction in the ladder exercise group was more significant. Conclusions  TWEAK may be involved in skeletal muscle catabolism. All three exercise patterns can alleviate skeletal muscle atrophy in rats, and the effect of ladder movement is more significant.

2005 ◽  
Vol 184 (1) ◽  
pp. 59-65 ◽  
Author(s):  
S. Terada ◽  
K. Kawanaka ◽  
M. Goto ◽  
T. Shimokawa ◽  
I. Tabata

Author(s):  
Feng Li-Li ◽  
Li Bo-Wen ◽  
Xi Yue ◽  
Tian Zhen-Jun ◽  
Cai Meng-Xin

Objectives: Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. Materials and Methods: Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. Conclusion: AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.


2011 ◽  
Vol 294 (8) ◽  
pp. 1393-1400 ◽  
Author(s):  
Rodrigo Wagner Alves De Souza ◽  
Andreo Fernando Aguiar ◽  
Fernanda Regina Carani ◽  
Gerson Eduardo Rocha Campos ◽  
Carlos Roberto Padovani ◽  
...  

2013 ◽  
Vol 38 (8) ◽  
pp. 862-869 ◽  
Author(s):  
Brittany A. Edgett ◽  
Melanie L. Fortner ◽  
Arend Bonen ◽  
Brendon J. Gurd

This study examined changes in the expression of translation initiation regulatory proteins and mRNA following both an acute bout of endurance exercise and chronic muscle contractile activity. Female Sprague Dawley rats ran for 2 h at 15 m·min−1 followed by an increase in speed of 5 m·min−1 every 5 min until volitional fatigue. The red gastrocnemius muscle was harvested from nonexercised animals (control; n = 6) and from animals that exercised either immediately after exercise (n = 6) or following 3 h of recovery from exercise (n = 6). Compared with control, ribosomal protein S6 (rpS6) mRNA was elevated (p < 0.05) at both 0 h (+32%) and 3 h (+47%). Both a catalytic subunit of eukaryotic initiation factor 2B (eIF2Bε) (+127%) and mammalian target of rapamycin (mTOR) mRNA (+44%) were increased at 3 h, compared with control. Phosphorylation of mTOR (+40%) and S6 kinase 1 (S6K1) (+266%) were increased immediately after exercise (p < 0.05). Female Sprague Dawley rats also underwent chronic stimulation of the peroneal nerve continuously for 7 days. The red gastrocnemius muscle was removed 24 h after cessation of the stimulation. Chronic muscle stimulation increased (p < 0.05) mTOR protein (+74%), rpS6 (+31%), and eukaryotic initiation factor 2α (+44%, p = 0.069), and this was accompanied by an increase in cytochrome c (+31%). Increased resting phosphorylation was observed for rpS6 (+51%) (p < 0.05) but not for mTOR or eukaryotic initiation factor 4E binding protein 1. These experiments demonstrate that both acute and chronic contractile activity up-regulate the mTOR pathway and mitochondrial content in murine skeletal muscle. This up-regulation of the mTOR pathway may increase translation efficiency and may also represent an important control point in exercise-mediated mitochondrial biogenesis.


1998 ◽  
Vol 275 (5) ◽  
pp. R1530-R1536 ◽  
Author(s):  
Julie Cieslar ◽  
Ming-Ta Huang ◽  
Geoffrey P. Dobson

Tissue spaces were determined in rat heart, liver, and skeletal muscle in vivo using isotopically labeled [14C]inulin. Tracer was injected into the jugular vein of pentobarbital-anesthetized male Sprague-Dawley rats. After a 30-min equilibration period, a blood sample was taken, and heart, liver, and gastrocnemius muscle were excised and immediately freeze clamped at liquid nitrogen temperatures. The extracellular inulin space was 0.209 ± 0.006 ( n = 13), 0.203 ± 0.080 ( n = 7), and 0.124 ± 0.006 (SE) ml/g wet wt tissue ( n = 8) for heart, liver, and skeletal muscle, respectively. Total tissue water was 0.791 ± 0.005 ( n = 9), 0.732 ± 0.002 ( n = 9), and 0.755 ± 0.005 ml/g wet wt tissue ( n = 10) for heart, liver, and skeletal muscle, respectively. Expressed as a percentage of total tissue water, the intracellular space was 73.6, 72.2, and 83.7% for heart, liver, and skeletal muscle, respectively. With use of 2,3-diphospho-d-glyceric acid as a vascular marker, the interstitial space was calculated by subtracting the counts in tissue due to whole blood from total tissue counts and dividing by plasma counts. The interstitial space was 18.8, 22.4, and 14.5% of total tissue water, with accompanying plasma spaces of 7.7, 5.3, and 1.8% for heart, liver, and gastrocnemius muscle, respectively. The tracer method used in this study provides a quantitative assessment of water distribution in tissues of nonnephrectomized rats that has applications for calculation of tissue ion and metabolite concentrations, gradients, and fluxes under normal and pathophysiological conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Damian Jozef Flis ◽  
Robert Antoni Olek ◽  
Jan Jacek Kaczor ◽  
Ewa Rodziewicz ◽  
Malgorzata Halon ◽  
...  

The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.


Sign in / Sign up

Export Citation Format

Share Document