scholarly journals Study of Density, Molar Volume, X-Ray Diffraction and Infrared Spectra of Phosphate Glasses

2021 ◽  
Vol 8 (2) ◽  
pp. 16-20
Author(s):  
Abdulkarim Z. Khalf ◽  
Ebtihal G . Khadr ◽  
Ayoub S .Karim ◽  
Mohammed H . Abbas ◽  
Manaf A . Hassan
2017 ◽  
Vol 268 ◽  
pp. 198-204
Author(s):  
A.M. Hilman ◽  
E.S. Sazali ◽  
Md Rahim Sahar ◽  
K. Azman ◽  
Yahya Norihan

The phosphate glasses, with composition (60-x)P2O5-25ZnO-(15+x)Li2O where 0.0 ≤ x ≤ 5.0 mol% are prepared by conventional melt quenching method. The amorphous nature of the glass is determined by X-Ray Diffraction (XRD). The physical properties are measured in term of their density and molar volume. Glass density is found to increase from 2.700 to 2.785 g cm-3 whereas molar volume is found to decrease from 40.735 to 37.488 cm3 mol-1 with respect to Li2O content. The DC measurements are done by using four point probes and the activation energies are determined. Arrhenius plot shows straight line behavior as observed that confirmed the conductivity increased with Li2O content. The activation energy is found to decreases from 0.75 to 0.08 eV as Li2O content is increased in the temperature range from 310 to 420 K. Measurements of the thermal conductivity using Lee’s disc apparatus have been made. It is observed that the maximum and minimum thermal conductivity are 0.2679 and 0.2168 W m-1 K-1 respectively.


1985 ◽  
Vol 50 (10) ◽  
pp. 2139-2145
Author(s):  
Alexander Muck ◽  
Eva Šantavá ◽  
Bohumil Hájek

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO4-YCrO4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D4h19 symmetry are formed over the region of 0-30 mol.% YPO4 in YCrO4. The Td → D2d → D2 or C2v(GS eff) correlation is appropriate for both PO43- and CrO43- anions.


2021 ◽  
Vol 10 (16) ◽  
pp. e404101622533
Author(s):  
Daniel Rocha Cardoso ◽  
Fernanda Pereira da Silva Rocha ◽  
Robson Alves da Silva ◽  
Marcelo Melo Viana ◽  
Ayse Suzel Martins Cosme ◽  
...  

This research aimed to evaluate the technological potential of genipap flour (Genipa americana L.) in freeze drying and oven drying processes. The ripened genipap fruits were harvested and submitted to pulp extraction, which after dehydration in an oven and freeze drying, were crushed to obtain the flours. When analyzed by X-ray diffraction, the flours were amorphous, with indicative of starch. In addition, the presence of water, aromatics and primary alcohols was observed by infrared spectra (FTIR). In micrograph (SEM) FPJDE was less porous and starches were identified. For thermogravimetry (TGA) similar thermal events occurred, it was important to verify the thermal behavior, humidity and ash present in the food. In the mineral composition, potassium, magnesium, manganese, iron, phosphorus, copper, and calcium were present, the flours as a source of manganese and with a high content of iron, potassium, copper and magnesium. It was concluded that the flours present a quantity of nutrients and favorable technological characteristics such as: thermal stability, humidity below that established by law for the manufacture and production of food.


2006 ◽  
Vol 21 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Wen Liang ◽  
Christian Rüssel ◽  
Delbert E. Day ◽  
Günter Völksch

A borate glass, phosphate glass, and silicate glass were converted to hydroxyapatite (HA) by soaking the substrates in a solution of K2HPO4 with a pH value of 9.0 at 37 °C. The weight loss of the substrates was studied as a function of time. Unlike the silicate glasses, the reaction processes of the borate glasses and phosphate glasses were bulk dissolution. X-ray diffraction and scanning electron microscopy revealed an initially amorphous product that subsequently crystallized to HA. The data suggest good bioactive characteristics for the borate and phosphate glass and the potential use of them as a favorable template for bone-tissue formation.


1990 ◽  
Vol 5 (5) ◽  
pp. 1083-1091 ◽  
Author(s):  
Manuel Ocaña ◽  
Egon Matijević

Spherical and rod-like SnO2 particles of narrow size distribution have been obtained by aging at 100°C acidified tin(IV) chloride solutions in the presence of urea or formamide. It was shown that spherical particles, the x-ray diffraction of which was characteristic of cassiterite, consisted of a large number of much smaller subunits. The rod-like particles had the same structure, but of higher degree of crystallinity. Infrared spectra of these powders were evaluated in terms of the theory of the average dielectric constant (TADC), in order to gain additional information on the particle morphology and the state of aggregation.


2006 ◽  
Vol 932 ◽  
Author(s):  
Paul A. Bingham ◽  
Russell J. Hand ◽  
Charlie R. Scales

ABSTRACTVitrification is a potential route for the immobilisation of Plutonium Contaminated Material (PCM). This is an Intermediate Level Waste (ILW) arising from operations in which there is contact with Pu isotopes. PCM consists of low levels of Pu combined with metals, masonry, glass, ceramics, polymers and other carbonaceous materials. Simulated PCM containing CeO2 as a PuO2 surrogate was mixed with a phosphate precursor and vitrified. Pre-oxidation of PCM simulant prior to vitrification minimised the violence of batch reactions. No pre-oxidation produced inhomogeneous slag-like materials with high residual metals and particulates. Pre-oxidation at 600°C in air and at 1200°C in an O2-rich atmosphere produced more favourable results, with increasingly vitreous products resulting from more oxidised PCM simulant. The most oxidised PCM simulant produced phosphate glasses with low levels of particulate inclusions, as confirmed by x-ray diffraction and scanning electron microscopy. Particulates included iron-rich metallics and aluminous oxides. Increased melting times and temperatures may have reduced the number of inclusions slightly, but O2 bubbling during melting resulted in little additional benefit. Waste loading equivalent to ∼60 weight % of untreated waste may be possible. There was little evidence of Ce partitioning, indicating that it was immobilised within the glass matrix and had little preference for metallic or crystalline phases. These results demonstrate the potential feasibility for vitrification of PCM in phosphate glass, justifying further investigation into this potentially novel solution.


2020 ◽  
Vol 27 (1) ◽  
pp. 212-216
Author(s):  
Helen E. A. Brand ◽  
Qinfen Gu ◽  
Justin A. Kimpton ◽  
Rebecca Auchettl ◽  
Courtney Ennis

The structure and thermal expansion of the astronomical molecule propionitrile have been determined from 100 to 150 K using synchrotron powder X-ray diffraction. This temperature range correlates with the conditions of Titan's lower stratosphere, and near surface, where propionitrile is thought to accumulate and condense into pure and mixed-nitrile phases. Propionitrile was determined to crystallize in space group, Pnma (No. 62), with unit cell a = 7.56183 (16) Å, b = 6.59134 (14) Å, c = 7.23629 (14), volume = 360.675 (13) Å3 at 100 K. The thermal expansion was found to be highly anisotropic with an eightfold increase in expansion between the c and b axes. These data will prove crucial in the computational modelling of propionitrile–ice systems in outer Solar System environments, allowing us to simulate and assign vibrational peaks in the infrared spectra for future use in planetary astronomy.


2019 ◽  
Vol 290 ◽  
pp. 35-40 ◽  
Author(s):  
Syariffah Nurathirah S. Yaacob ◽  
M.R. Sahar ◽  
E.S. Sazali ◽  
S. Sulhadi

Tuning the concentration of nanoparticles (NPs) to accommodate wider application demanded a better understanding of the physicals and structural properties of the glass. A series of zinc phosphate glasses with the composition of (57-x) P2O5- 40ZnO-3Tb2O3 –xCuO, (0 ≤ x ≤ 2 mol %) has been prepared by melt quenching technique and their physical and optical characterization have been studied. The X-Ray Diffraction technique and UV-Vis Spectroscopy have been used to characterize the glass sample. The XRD confirms the amorphous nature of the prepared glasses. The physical properties of glasses with different CuO NPs such as density, molar volume, refractive index and electronic polarizability are determined. It is found that both density and molar volume decreases with increasing CuO NPs concentration. The optical band gap (4.54 eV-2.96 eV) and the Urbach energy (0.19 eV-0.54 eV) are showing a decreasing trend with the increasing amount of CuO NPs.This is due to the formation of non-bridging oxygen, (NBO) in the glass network. The glass exhibits high refractive index ~2.40 and polarizability ~1.12 ×10-23 cm3 and is useful for solid-state laser and optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document