STRUCTURAL BEHAVIOR OF CONNECTIONS BETWEEN CONCRETE COMPONENTS AND GUSSET PLATE WITH STUD BOLTS

Author(s):  
Yusuke Maida ◽  
Shuhei Harada ◽  
Hiroyasu Sakata ◽  
Takumi Sato ◽  
Masaharu Kubota

Dampers are effective in ensuring the earthquake resistance of reinforced concrete (RC) buildings. Reliable connections between dampers and concrete components are critical for dampers to effectively function in RC buildings. In this study, the structural behavior of connections between concrete components and a gusset plate with stud bolts to join the damper to the RC buildings was analyzed. Component tests of the connections between the concrete components and the gusset plate with stud bolts were conducted. The specimen parameters were the arrangement of stud bolts and the presence or absence of a closing plate. As a result of the tests, the stiffness of the connections was different depending on the arrangement of the stud bolts. In addition, the specimen with the closing plates exhibited high stiffness and strength. Finally, an evaluation method for the force-displacement curve of the connections between the concrete components and the gusset plate with stud bolts is provided.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Author(s):  
Eiji Shirai ◽  
Tetsuya Zaitsu ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

At domestic PWR plants in Japan, one of the major key issues is earthquake-proof safety [1–3]. Recently, a design procedure using energy absorption, not conventional rigid design, was authorized according to revised review guidelines for aseismic design (JEAC4601). Therefore, we focused on the design technique that utilizes energy absorption effects to reduce the seismic responses of the piping system with U-Bolt, by the static and dynamic tests of simplified piping model supported by U-Bolt. The force-displacement characteristics and a fatigue diagram were obtained by the tests.


2021 ◽  
pp. 875529302199483
Author(s):  
Eyitayo A Opabola ◽  
Kenneth J Elwood

Existing reinforced concrete (RC) columns with short splices in older-type frame structures are prone to either a shear or bond mechanism. Experimental results have shown that the force–displacement response of columns exhibiting these failure modes are different from flexure-critical columns and typically have lower deformation capacity. This article presents a failure mode-based approach for seismic assessment of RC columns with short splices. In this approach, first, the probable failure mode of the component is evaluated. Subsequently, based on the failure mode, the force–displacement response of the component can be predicted. In this article, recommendations are proposed for evaluating the probable failure mode, elastic rotation, drift at lateral failure, and drift at axial failure for columns with short splices experiencing shear, flexure, or bond failures.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Peida Hao ◽  
Yanping Liu ◽  
Yuanming Du ◽  
Yuefei Zhang

In situ nanoindentation was employed to probe the mechanical properties of individual polycrystalline titania (TiO2) microspheres. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope (SEM/SPM) system were analyzed based on Hertz’s theory of contact mechanics. However, the deformation mechanisms of the nano/microspheres in the nanoindentation tests are not very clear. Finite element simulation was employed to investigate the deformation of spheres at the nanoscale under the pressure of an AFM tip. Then a revised method for the calculation of Young’s modulus of the microspheres was presented based on the deformation mechanisms of the spheres and Hertz’s theory. Meanwhile, a new force-displacement curve was reproduced by finite element simulation with the new calculation, and it was compared with the curve obtained by the nanoindentation experiment. The results of the comparison show that utilization of this revised model produces more accurate results. The calculated results showed that Young’s modulus of a polycrystalline TiO2microsphere was approximately 30% larger than that of the bulk counterpart.


2009 ◽  
Vol 24 (3) ◽  
pp. 784-800 ◽  
Author(s):  
Ling Liu ◽  
Nagahisa Ogasawara ◽  
Norimasa Chiba ◽  
Xi Chen

Indentation is widely used to extract material elastoplastic properties from measured force-displacement curves. Many previous studies argued or implied that such a measurement is unique and the whole material stress-strain curve can be measured. Here we show that first, for a given indenter geometry, the indentation test cannot effectively probe material plastic behavior beyond a critical strain, and thus the solution of the reverse analysis of the indentation force-displacement curve is nonunique beyond such a critical strain. Secondly, even within the critical strain, pairs of mystical materials can exist that have essentially identical indentation responses (with differences below the resolution of published indentation techniques) even when the indenter angle is varied over a large range. Thus, fundamental elastoplastic behaviors, such as the yield stress and work hardening properties (functions), cannot be uniquely determined from the force-displacement curves of indentation analyses (including both plural sharp indentation and deep spherical indentation). Explicit algorithms of deriving the mystical materials are established, and we qualitatively correlate the sharp and spherical indentation analyses through the use of critical strain. The theoretical study in this paper addresses important questions of the application range, limitations, and uniqueness of the indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material constitutive properties.


1998 ◽  
Vol 515 ◽  
Author(s):  
S. Wiese ◽  
F. Feustel ◽  
S. Rzepka ◽  
E. Meusel

ABSTRACTThe paper presents crack propagation experiments on real flip chip specimens applied to reversible shear loading. Two specially designed micro testers will be introduced. The first tester provides very precise measurements of the force displacement hysteresis. The achieved resolutions have been I mN for force and 20 nm for displacement. The second micro tester works similar to the first one, but is designed for in-situ experiments inside the SEM. Since it needs to be very small in size it reaches only resolutions of 10 mN and 100nm, which is sufficient to achieve equivalence to the first tester. A cyclic triangular strain wave is used as load profile for the crack propagation experiment. The experiment was done with both machines applying equivalent specimens and load. The force displacement curve was recorded using the first micro mechanical tester. From those hysteresis, the force amplitude has been determined for every cycle. All force amplitudes are plotted versus the number of cycles in order to quantify the crack length. With the second tester, images were taken at every 10th … 100th cycle in order to locate the crack propagation. Finally both results have been linked together for a combined quatitive and spatial description of the crack propagation in flip chip solder joints.


Sign in / Sign up

Export Citation Format

Share Document