scholarly journals MAGNETIC METHODS OF EVALUATING ELASTIC STRESSES IN FERROMAGNETIC STEELS (REVIEW)

2020 ◽  
pp. 4-23
Author(s):  
E. S. Gorkunov ◽  
A. N. Mushnikov

The paper describes the magnetoelastic effects and the existing concepts of the formation of magnetic textures under the action of elastic stresses in ferromagnetic materials. The possibilities of using magnetic parameters to assess the acting stresses in structural steels are shown: the assessment of the value of uniaxial compressive stresses is practically not difficult, however, there is a problem of assessing tensile stresses in low-alloy steels due to the ambiguous dependence of the magnetic characteristics on elastic tensile deformation. Possible reasons for this ambiguity are discussed, and methods for solving this problem using the anisotropy of the coercive force and the parameters of the magnetic rigidity spectra are shown. The possibilities of evaluating the acting stresses in multilayer ferromagnetics based on the field dependences of the differential magnetic permeability are considered. Papers on the study of the influence of complexly stressed states on the magnetic characteristics of ferromagnetic materials are discussed.

2021 ◽  
Author(s):  
Borys Sereda ◽  
◽  
Dmytro Sereda ◽  
Vitalyy Volokh ◽  
Vladimir Sukhomlyn ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4981
Author(s):  
Wenbin Ma ◽  
Hongyun Luo ◽  
Zhiyuan Han ◽  
Linyan Zhang ◽  
Xiaoguang Yang

The effect of different microstructures, obtained under different tempering temperatures on acoustic emission (AE) characteristics and source mechanisms during tensile deformation, was investigated in this study. Different heat treatments were carried out on hot-rolled low-alloy steels to obtain different microstructures (ferrite/pearlite, tempered martensite and tempered sorbite) and the AE was used to monitor the deformation and fracture process of samples of different types (BM, 200 °C tempered and 600 °C tempered). The results showed that the microstructure had different influences on the high amplitude burst-type signals and low amplitude continuous-type signals during the deformation and fracture process of low-alloy steels. In the 200 °C tempered sample, the continuous-type signals were enhanced by the high yield stress and dislocation velocity induced by the block of the lath martensite whose substructure was high-density dislocation. On the other hand, the interaction of the precipitates with the local dislocations increased the intensity of AE events, thus generating burst-type signals with higher amplitude in the 600 °C tempered samples.


CORROSION ◽  
1979 ◽  
Vol 35 (9) ◽  
pp. 402-409 ◽  
Author(s):  
B. W. ROBERTS ◽  
P. GREENFIELD

Abstract A range of low alloy steels, commonly used in the construction of steam turbines, has been tested for susceptibility to stress corrosion cracking (SCC) in pure condensing steam and pure water. It has been shown that when tested for prolonged periods, the steels will initiate cracks in steam only at very high stresses. Initiation is promoted by stagnant conditions and retarded by residual compressive stresses. Propagation rates of cracks are low but increase as the strength level of the steel is raised. A low strength molybdenum free steel is much more resistant to stress corrosion than any of the other steels examined.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2020 ◽  
Vol 2020 (10) ◽  
pp. 8-21
Author(s):  
A. G. Kolmakov ◽  
◽  
I. O. Bannykh ◽  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
...  

he basic ideas about the process of introducing cores into protective barriers and the most common core patterns and their location in conventional and sub-caliber small arms bullets are discussed. The materials used for manufacture of cores are analyzed. It is concluded that for mass bullets of increased armor penetration the most rational choice can be considered the use of high-carbon low-alloy steels of a new generation with a natural composite structure and hardness of up to 70 HRC. For specialized armor-piercing bullets, cores made from promising economically-alloyed high-speed steels characterized by a high complex of «hardness—bending strength» are better alternative than ones made of hard alloys or tungsten alloys.


Alloy Digest ◽  
1978 ◽  
Vol 27 (1) ◽  

Abstract UNIFLUX VCM 125 is a continuous flux-cored welding electrode (wire) that is used to deposit 1 1/4% chromium-1/2% molybdenum steel for which it was developed. Welding is protected by a shielding atmosphere of 100% carbon dioxide. This electrode also may be used to weld other low-alloy steels and carbon steels; however, the weld metal may differ somewhat from 1 1/4% chromium-1/2% molybdenum because of weld-metal dilution. When Uniflux VCM 125 is used to weld 1 1/4% chromium-1/2% molybdenum steel, it provides 95,000 psi tensile strength at 70 F and 24 foot-pounds Charpy V-notch impact at 40 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-340. Producer or source: Unicore Inc., United Nuclear Corporation.


Sign in / Sign up

Export Citation Format

Share Document