scholarly journals Categorization of Bacterial Pathogens Present in Infected Wounds and their Antibiotic Resistance Profile Recovered from Patients Attending Rizgary Hospital-Erbil

2021 ◽  
Vol 9 (2) ◽  
pp. 64-70
Author(s):  
Ahmed A. Al-Naqshbandi ◽  
Hedy A. Hassan ◽  
Mahmoud A. Chawsheen ◽  
Haval H. Abdul Qader

Wound infection with antibiotic-resistant bacteria can extend a patients’ debility and increase the expense of treatment in the long term; therefore, careful management of patients with wound infections is necessary to avoid complications. The usage of antimicrobial agent is a major factor in resistance development. This study aims to understand the causes of wound infections, as well as the criteria for diagnosing them for more sensible antibiotic prescribing. Samples from 269 wound patients were collected, and cultured for bacterial growth. Gram stain technique, bacterial identification via VITEK 2 compact system were investigated in this study. Gram negative bacteria accounted for 59.15% of the total isolates, while pathogenic gram positive bacteria accounted for 40.85% of total isolates. Escherichia coli and Pseudomonas aeruginosa are the dominant pathogenic gram negative bacteria in wounds, while Staphylococcus aureus, and Staphylococcus epidermidis are the dominant pathogenic gram positive bacteria. Pseudomonas aeruginosa showed 100% resistance to the majority of antibiotic tested, including Ampicillin, Amoxicillin/Clavulanic Acid, Aztreona, Ceftriaxone, and others. Staphylococcus aureus and Staphylococcus epidermidis are 100% resistant to Ampicillin, Ceftriaxone, and Cefotaxime. For more efficient antibiotic prescriptions, the causative microorganisms, and their current susceptibility patterns need to be mandated for testing before prescribing any antibiotics to patients. Prescriptions are frequently based solely on general information about the antibiotic's function, rather than on individual response variation to the pathogen and the antibiotic. Particularly when the common pathogens in this study show multidrug resistance in wounds.

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Salu Rai ◽  
Uday Narayan Yadav ◽  
Narayan Dutt Pant ◽  
Jaya Krishna Yakha ◽  
Prem Prasad Tripathi ◽  
...  

In Nepal, little is known about the microbiological profile of wound infections in children and their antimicrobial susceptibility patterns. Total of 450 pus/wound swab samples collected were cultured using standard microbiological techniques and the colonies grown were identified with the help of biochemical tests. The antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Methicillin-resistantStaphylococcus aureusisolates were detected by using cefoxitin disc and confirmed by determining minimum inhibitory concentrations (MIC) of oxacillin. 264 (59%) samples were culture positive. The highest incidence of bacterial infections was noted in the age group of less than 1 year (76%). Out of 264 growth positive samples, Gram-positive bacteria were isolated from 162 (61%) samples and Gram-negative bacteria were found in 102 (39%) samples.Staphylococcus aureus(99%) was the predominant Gram-positive bacteria isolated andPseudomonas aeruginosa(44%) was predominant Gram-negative bacteria. About 19% ofS. aureusisolates were found to be methicillin-resistant MIC of oxacillin ranging from 4 μg/mL to 128 μg/mL. Among the children of Nepal, those of age less than 1 year were at higher risk of wound infections by bacteria.Staphylococcus aureusfollowed byPseudomonas aeruginosawere the most common bacteria causing wound infections in children.


2017 ◽  
Vol 5 (33) ◽  
pp. 6953-6962 ◽  
Author(s):  
Florent Le Guern ◽  
Tan-Sothea Ouk ◽  
Karine Grenier ◽  
Nicolas Joly ◽  
Vincent Lequart ◽  
...  

Following light irradiation, a new nanomaterial, elaborated from CNCs, chlorin-e6 and polymyxin B, demonstrated efficiency against Gram-negative bacteria (Escherichia coli,Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus,Staphylococcus epidermidis).


Author(s):  
Pratirodh Koirala ◽  
Dwij Raj Bhatta ◽  
Prakash Ghimire ◽  
Bharat Mani Pokhrel ◽  
Upendra Devkota

The tracheostomized patients are colonized mostly by gram negative bacteria which lead to either tracheobronchitis or bronchopneumonia. This study was conducted to isolate and identify the potential pathogen causing post tracheostomy infection. A cross-sectional study was conducted during April 2008 to February 2009 based at Neuro Center, Kathmandu. Tracheal aspirates of 50 patients having fever more than 38°C were collected and analyzed for bacterial content. Out of the 50 cases, 45(90%) cases showed bacterial growth. Sixty-seven isolates were identified; with 20(44.4%) poly-microbial cases. Pseudomonas aeruginosa and enteric gram negative bacteria were predominant bacteria (n=27, 40.3%) followed by Staphylococcus aureus (n=7, 10.4%), other Gram negative bacteria (n=4, 5.9%) and Viridans Streptococci (n=2, 2.9%). Pseudomonas aeruginosa were most sensitive to the Amikacin (n=22, 81.4%) and Ciprofloxacin (n=19, 70.3%). All Pseudomonal isolates were resistant to the Cefotaxime. Enteric Gram Negative bacteria (EGNB) were most sensitive to Amikacin and Chloramphenicol (20, 74.0%) and all were resistant to Ampicillin and Cephalexin. All the gram positive bacteria isolated were sensitive to Vancomycin. Among the total isolates, 24 (88.8%) of Pseudomonas aeruginosa, 21 (66.6%) of enteric gram negative bacteria, and 5 (55.5%) of Gram positive bacteria were multidrug resistant (MDR). The study reported alarming condition of MDR in tracheal aspirates. So surveillance for source of multidrug resistant bacteria would be beneficial for intervention of infection related to it. Key words: Tracheal aspirates, polymicrobial growth, Multidrug resistant bacteria (MDR)10.3126/ijls.v4i0.3496International Journal of Life Sciences Vol.4 2010 pp.60-65


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


1988 ◽  
Vol 55 (4) ◽  
pp. 597-602 ◽  
Author(s):  
Lydia Bautista ◽  
Rohan G. Kroll

SummaryEffects of the addition of a proteinase (Neutrase 1–5S) and a peptidase (aminopeptidase DP-102) as agents for accelerating the ripening of Cheddar cheese on the survival of some non-starter bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coliand aSalmonellasp.) were studied throughout a 4-month ripening period. The enzymes were found to have no significant effect on the survival of the Gram-positive bacteria but some significant effects were observed, at some stages of the ripening period, with the Gram-negative bacteria in that lower levels were recovered from cheeses treated with the enzyme system.


2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


Author(s):  
Sotianingsih Sotianingsih ◽  
Samsirun H. ◽  
Lipinwati Lipinwati

Pneumonia is defined as an inflammation of the lungs caused by microorganisms (bacteria, viruses, fungi, parasites). This research aimed to determine the pneumonia-causing bacteria along with the sensitivity and the antibiotic resistance test. This research was a descriptive study with samples of ICU pneumonia patients at Raden Mattaher Regional Hospital during the study period. All samples were consecutively selected. Samples for blood culture were incubated in the BactAlert device, whereas the sensitivity test was then performed using Vitex instruments. Sputum was previously enriched with BHI media and then cultured on culture media, and sensitivity test with the Vitex instruments was carried out. Of the 354 ICU patients during the study period, 30 patients (11.8%) had pneumonia, but only 19 patients could undergo sputum culture. Five of 19 patients were infected with Gram-positive bacteria, and 14 patients were infected with Gram-negative bacteria. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). Gram-negative bacteria obtained from sputum culture in this study were resistant to almost all antibiotic groups, especially penicillin, cephalosporin, quinolone, and tetracycline groups. Gram-positive bacteria obtained from sputum culture in this study were resistant to the penicillin antibiotic. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). The bacteria cultured from the sputum showed multidrug resistance mainly to the penicillin and cephalosporin antibiotic. This research data can be used to consider the treatment of pneumonia patients to decide more appropriate therapy.


2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.


2020 ◽  
Vol 12 (2) ◽  
pp. 56-63
Author(s):  
Marko Naumovski ◽  
Ivamaria Jovanovska ◽  
Kakja Popovska ◽  
Vesna Velikj Stefanovska ◽  
Gordana Mirchevska

In recent years, snakes have become suitable pets for people with little spare time. By buying these animals people ignore the fact that they carry many microorganisms that are pathogenic for humans. The idea of ​​this study was to identify the microorganisms from the oral cavity of exotic snakes kept as pets in the Republic of North Macedonia, which can help in the treatment of bite infections if they occur. The study comprised 30 snakes of 9 species, from 3 families of non-venomous snakes: Pythonidae, Boidae and Colubridae. Snakes are part of the 5 largest collections of exotic snakes in the Republic of North Macedonia. Only one swab from the oral cavity was taken from each snake. The brushes were cultured and microscopically analyzed at the Institute of Microbiology and Parasitology at the Faculty of Medicine in Skopje. From 59 isolated microorganisms from the oral cavity of 30 exotic snakes, 37.3% were Gram-positive bacteria, 61.01% were Gram-negative bacteria and 1.69% were fungi. Of the total number of microorganisms, Pseudomonas aeruginosa was predominant with 27.11%, Providencia rettgeri / Proteus vulgaris with 18.64% and KONS / Micrococcus luteus with 16.94%. Pseudomonas aeruginosa was present in all three snake families, with 62.5% of the snake in the fam. Pythonidae; 50% in the fam. Boidae and 50% in the fam. Colubridae. The isolate Providencia rettgeri / Proteus vulgaris was most frequently found in the fam. Colubridae with 71.43%, followed by fam. Pythonidae with 12.5%, but was not isolated in any specimen of the fam. Boidae. The microbiome of the non-venomous snakes is composed of Gram-positive bacteria in healthy snakes, but also in snakes kept in inadequate hygienic conditions. Gram-negative bacteria were predominant, of which the most significant was the presence of multiple drug resistance Pseudomonas aeruginosa. Snakes as pets require proper knowledge of terms and conditions.


Sign in / Sign up

Export Citation Format

Share Document