Choline-Based Deep Eutectic Solvent and Microwave Irradiation as Tools for PET Identification in Blend Fabric

2021 ◽  
Vol 8 (1) ◽  
pp. 40-50
Author(s):  
Samuel Choi ◽  
Hyung-Min Choi

A new, rapid, and eco-friendly technique for identification of polyethylene terephthalate (PET) composition in blend fabric was developed. This technique could replace a conventional composition identification of PET using toxic chemicals such as halogenated organic solvent or strong inorganic acid. Choline-based deep eutectic solvents (DES), such as ethylene glycol- choline chloride, were used as a treatment medium under microwave irradiation. The PET portion of the blend fabrics, such as 65/35 and 50/50 PET/cotton was completely removed by DES containing 5% NaOH (w/v) after 100–140 s of microwave irradiation. Various instrumental analyses confirmed the removal of PET. Finally, a commercial sample was also tested as a practical application of the new test method.

2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7301-7310
Author(s):  
Veronika Majová ◽  
Silvia Horanová ◽  
Andrea Škulcová ◽  
Jozef Šima ◽  
Michal Jablonský

This study aimed to resolve the issue of the lack of detailed understanding of the effect of initial lignin content in hardwood kraft pulps on pulp delignification by deep eutectic solvents. The authors used Kappa number of the concerned pulp, intrinsic viscosity, and selectivity and efficiency of delignification as the parameters of the effect. The pulp (50 g oven dry pulp) was treated with four different DESs systems based on choline chloride with lactic acid (1:9), oxalic acid (1:1), malic acid (1:1), and system alanine:lactic acid (1:9); the results were compared to those reached by oxygen delignification. The results showed that the pulp with a higher initial lignin content had a greater fraction of easily removed lignin fragments.


2021 ◽  
Author(s):  
José González-Rivera ◽  
Angelica Mero ◽  
Elena Husanu ◽  
Andrea Mezzetta ◽  
Carlo Ferrari ◽  
...  

Key features of the deep eutectic solvent-microwave assisted simultaneous extraction of polyphenols and delignification pretreatment of chestnut shell waste are presented.


Environments ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 97
Author(s):  
Chiau Yuan Lim ◽  
Mohd Faridzuan Majid ◽  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Khairulazhar Jumbri ◽  
...  

Extractive catalytic oxidative desulfurization (ECODS) is the one of the recent methods used in fuel desulfurization which involved the use of catalyst in the oxidative desulfurization of diesel fuel. This study is aimed to test the effectiveness of synthesized choline chloride (ChCl) based deep eutectic solvent (DES) in fuel desulfurization via ECODS method, with the presence of graphene oxide (GO) as catalyst and hydrogen peroxide (H2O2) as oxidant. In this study, 16 DESs based on choline chloride were synthesized using glycerol (GLY), ethylene glycol (EG), tetraethylene glycol (TEG) and polyethylene glycol (PEG). The characterization of the synthesized DES was carried out via Fourier transform infrared spectroscopy (FTIR) analysis, density, and viscosity determination. According to the screening result, ChCl-PEG (1:4) was found to be the most effective DES for desulfurization using ECODS method, with a removal of up to 47.4% of sulfur containing compounds in model oil in just 10 min per cycle after the optimization of the reaction parameters, and up to 95% desulfurization efficiency could be achieved by six cycles of desulfurization. It is found that the addition of GO as catalyst does not increase the desulfurization performance drastically; hence, future studies for the desulfurization performance of DESs made up from ChCl and PEG and its derivatives can be done simply by using extraction desulfurization (EDS) method instead of ECODS method, for cost reduction purpose and easier regulation of DES waste into environment.


2016 ◽  
Vol 18 (3) ◽  
pp. 826-833 ◽  
Author(s):  
Xavier Marset ◽  
Juana M. Pérez ◽  
Diego J. Ramón

The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(ii) oxide impregnated on magnetite as a catalyst has been accomplished successfully.


2019 ◽  
Vol 21 (31) ◽  
pp. 17200-17208 ◽  
Author(s):  
Dhawal Shah ◽  
Ulan Mansurov ◽  
Farouq S. Mjalli

Intermolecular interactions within the mixtures of DMSO and reline, a typical type III Deep Eutectic Solvent (DES), composed of urea and choline chloride, is examined along with the mixtures' physical properties.


2020 ◽  
Vol 15 (2) ◽  
pp. 1934578X1990070 ◽  
Author(s):  
Weida Zhang ◽  
Shaobo Cheng ◽  
Xiaona Zhai ◽  
Junshe Sun ◽  
Xuefang Hu ◽  
...  

Deep eutectic solvents (DESs) were proposed for the extraction of polysaccharides from Poria cocos (PCPs). Six types of DESs were prepared, and the DES composed of choline chloride and oxalic acid was proved to be suitable. Based on the results of single-factor test, the Box-Behnken experimental design with response surface methodology was carried out, giving the optimal extraction conditions including mole ratio of 1:2 (choline chloride:oxalic acid) and extraction 15 minutes at 100°C. Under the optimal extraction conditions, the extraction yield (46.24% ± 0.13%) was 8.6 times higher than that of hot water. The reusability of DES was demonstrated by a 6-run test, and an extraction yield of PCP was 38.40% ± 0.23% after reusing for 6 times without adding any additional chemicals. Moreover, molecular weight distributions of the resulting PCP were analyzed, and then mainly distributed in the range of 753 to 3578 g/mol. Therefore, DESs were proved to be an excellent extraction solvent alternative to the extraction of PCP.


2017 ◽  
Author(s):  
Xifeng Zhang ◽  
Ji Zhang

Deep eutectic solvents (DESs) are new green solvents that have attracted the attention of the scientific community mainly due to their unique properties and special characteristics, which are different from those of traditional solvents.A method based on ultrasonically assisted deep eutectic solvent aqueous two-phase systems( UAE-DES-ATPS) was developed for extracting ursolic acid (UA) from Cynomorium songaricum Rupr. Four different types of choline chloride-based DESs were prepared.Choline chloride-glucose (ChCl-Glu) exhibited good selective extraction ability. An optimum DES-ATPS of 36% (w/w) ChCl-Glu and 25% (w/w) K2HPO4 was considered to be a satisfactory system for extracting UA. Response surface methodology (RSM) method was used to optimize the extraction of UA using UAE-DES-ATPS. The optimum ultrasound-assisted conditions were as follows: solvent to solid ratio of 15:1 (g/g), ultrasound power of 470 W, and extraction time of 54 min. Compared with the conventional UAE method, the yields were basically the same, but the presented method had higher purity. The structure of UA did not change between pure UA and UA in the upper phase by UV–vis and FT-IR. This approach using ChCl-based DES-ATPS as a novel extraction system and ultrasound as a source of energy provided better choice for the separation of active components from other natural products.


Author(s):  
Hai Truong Nguyen ◽  
Dung Thi Kim Ngo ◽  
Thinh Nguyen Huu Pham ◽  
Phuong Hoang Tran

Synthesis of zinc oxide nanoparticles (ZnO) which was found to be effective catalyst for Friedel-Crafts benzoylation reaction in the presence of deep eutectic solvent (DES). The method is one of the most important intermediates for preparing fine chemicals in the field of pharmaceuticals, which is a tool for organic syntheses of aromatic ketones. ZnO precursor was prepared from Zn(CH3COO)2.2H2O and H2C2O4.2H2O, ZnO nanoparticles were characterized by using X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM). The benzoylation of aromatic compounds and benzoyl chloride using nanoparticles ZnO/ [CholineCl][Urea]2, under microwave irradiation afforded the desired products in high yields and short reaction times. The catalyst/solvent could be recycled several times without loss of efficient catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document