scholarly journals ANALYTICAL MODEL FOR COMPENSATING MOTION ERROR IN THE ADAPTIVE MOTION CONTROL OF THE BIOMECHANICAL SYSTEM

2019 ◽  
Vol 19 (2) ◽  
pp. 79-85
Author(s):  
V Zagrevskiy ◽  
O Zagrevskiy

Aim. The article deals with developing software to simulate the motion of an object with the given parameters of initial and final phase status. Materials and methods. A motion error in sports exercise is the result of kinematic deviation from the parameters of a given motion program. The mathematical apparatus of adaptive control allows neutralizing motion mistakes between a program and a real trajectory. It is based on utilising the information about current parameters of a phase status of a moving object in a mathematical structure of the control function. The article proposes and experimentally proves the hypothesis about the computer synthesis of motions in biomechanical systems based on the mathematical apparatus of adaptive control. In the computational experiments, a mathematical description of an object is based on a well-established law of open-time approximation (A.P. Batenko, 1977), which requires that both velocity and coordinates simultaneously take the given values. Motion time in this law is an uncontrolled parameter. The mathematical model of a moving object is built as a system of a first-order differential equation. Results. A mathematical model describing the motion of a material point with given phase coordinates at the initial and final points in time is implemented in a computer program. The program works based on the integrated development environment Visual Studio Express 2013 and the Visual Basic 2010 language environment. Conclusion. The developed computer model of adaptive control achieves the aim of any motion, which implies transferring an object from a given initial state to the required final state.

Author(s):  
Igor Gamayun ◽  
Serhii Shashkov

The subject of the research is the process of modeling the functioning of a traffic light, providing adaptive control of vehicles at the intersectionsof the city transport network. In the process of functioning of urban transport networks, such phenomena as traffic jams occur, which lead tosignificant economic losses, environmental degradation, frustration of road users and other types of negative impacts. Traffic jams often occur at thenodes of the urban transport network, which are intersections - the places of intersection, abutment or branching of roads of the urban network of thesame level. One of the causes of congestion is the ineffective management of traffic flows at intersections, which is provided by such an element of theintersection as a traffic light. Within the framework of the existing transport network, traffic lights that implement adaptive control with the help ofappropriate local controllers, and more complex system controllers created on their basis, ensuring that the situation in the external environment istaken into account, which is represented by several interconnected intersections, is currently one of the most important directions for solving theproblem of traffic jams. The traffic light flow control function is implemented using a microprocessor controller, which, according to a given algorithm, switches the traffic light colors corresponding to the phases of allowing and prohibiting the movement of the vehicle in the directions of theintersection roads.The article proposes a mathematical model for building an algorithm for the functioning of a microprocessor traffic light controller, whichprovides a prompt and adequate display of situations at intersections. The main features of the model include responsiveness to changes in situations atan intersection by changing the duration of the permissive phase of movement in each cycle of traffic light operation in proportion to the length of thequeue of vehicles in the corresponding direction of travel; adequate display of the external environment by several expressions of Poisson’s law,differing in different values of the parameter, each of which corresponds to a certain daily interval of traffic light functioning; the dynamics of changesin the traffic situation due to a decrease in the number of vehicles in the queue due to the passage of the intersection by vehicles during the green phaseof the traffic light is determined on the basis of expressions that determine the movement of bodies with uniformly accelerated and uniform movement,as well as on the basis of the differential equation of the dynamics of movement of vehicles in one row taking into account the delay caused by thereaction of drivers.


2019 ◽  
Vol 97 ◽  
pp. 05023 ◽  
Author(s):  
Daler Sharipov ◽  
Sharofiddin Aynakulov ◽  
Otabek Khafizov

The paper deals with the development of mathematical model and numerical algorithms for solving the problem of transfer and diffusion of aerosol emissions in the atmospheric boundary layer. The model takes into account several significant parameters such as terrain relief, characteristics of underlying surface and weather-climatic factors. A series of numerical experiments were conducted based on the given model. The obtained results presented here show how these factors affect aerosol emissions spread in the atmosphere.


2019 ◽  
Vol 19 (1) ◽  
pp. 93-99
Author(s):  
V Zagrevskiy ◽  
O Zagrevskiy

Aim. The article deals with developing a computer program to simulate the movement of the object with a given initial and final speed and fixed travel time. Materials and methods. The analysis, as a method of biomechanics, allows us to assess the biomechanical state of the athlete in real sports exercises. The function of motion synthesis is the ability to predict the trajectory and behavior of the biomechanical system at specified reference points of the phase structure of the simulated motion. The article deals with one of the methods of biomechanical synthesis of movements: synthesis of control of the final state of biomechanical systems, based on the reduction of finite control to a given program control after attenuation of the transient component of acceleration. The mathematical description of the object motion is based on the known law of finite control with feedback. Integration of the mathematical model constructed in the form of the differential equation of the second order was carried out by one of the numerical methods of integration: Runge–Kutta method of the fourth order of accuracy. Consideration of the method is based on a mathematical apparatus describing the motion of a material point, which can be represented by a common center of mass of a biomechanical system, a joint, a center of mass of a segment, etc. Results. The mathematical model of the motion of a material point with the given kinematic parameters of motion at the initial and final moments is implemented in a computer program in the Visual Basic 2010 language environment based on the integrated development environment Visual Studio Express 2013. The output provides numerical and visual support for simulation results. Conclusion. It is shown that the developed computer model of the method always implements the goal of motion: to transfer an object from a given initial state by speed to a given final state for a fixed time of movement.


Author(s):  
Darina Hroncová

Urgency of the research. Computer models mean new quality in the knowledge process. Using a computer model, the properties of the subject under investigation can be tested under different operating conditions. By experimenting with a com-puter model, we learn about the modelled object. We can test different machine variants without having to produce and edit prototypes. Target setting. The development of computer technology has expanded the possibility of solving mathematical models and allowed to gradually automate the calculation of mathematical model equations. It is necessary to insert appropriate inputs of the mathematical model and monitor and evaluate the output results through the computer output device The target was to describe the mathematical apparatus required for mathematical modeling and subsequently to compile a model for computer modeling. Actual scientific researches and issues analysis. When formulating a mathematical model for a computer, the laws and the theory we use are always valid under more or less idealized conditions, and operate with fictitious concepts such as, material point, ideal gas, intangible spring, and the like. However, with these simplifications, we describe a realistic phenomenon where the initial assumptions are only met to a certain extent. In order for the results not to be different from the modeled reality, it is to be assumed that a good computer model arises gradually, by verifying and modifying it, which is one of the advantages of MSC Adams. Uninvestigated parts of general matters defining. The question of building a real manipulator model. Based on the above simulation, it is possible to build a real model. The research objective. Using MSC Adams to simulate multiple body systems and verify its suitability for simulating ma-nipulator and robot models. In various versions of the assembled model we can monitor its behavior under different operating conditions. The statement of basic materials. In computer simulation, MSC Adams-View is used to simulate mechanical systems. It has an interactive environment for automated dynamic analysis of parameterized mechanical systems with an arbitrary struc-ture of rigid and flexible bodies with geometric or force joints, in which act gravity, inertia, experimentally designed contact, friction, aerodynamic, hydrodynamic or electromechanical forces and have integrated control, hydraulic, pneumatic or elec-tromechanical circuits. Conclusions. Working with a mathematical model on a computer opens space for specific synthesis of empirical and ana-lytical method of scientific knowledge. Working with the computer model carries the characteristic features of classical experi-mentation. It represents a qualitatively new way of solving tasks that can not be experimented with on a real object. The result is the equivalence of the computer model and the object being investigated with the features and expressions chosen as essen-tial, with accuracy sufficient to the exact purpose.


With the advent in technology, security and authentication has become the main aspect in computer vision approach. Moving object detection is an efficient system with the goal of preserving the perceptible and principal source in a group. Surveillance is one of the most crucial requirements and carried out to monitor various kinds of activities. The detection and tracking of moving objects are the fundamental concept that comes under the surveillance systems. Moving object recognition is challenging approach in the field of digital image processing. Moving object detection relies on few of the applications which are Human Machine Interaction (HMI), Safety and video Surveillance, Augmented Realism, Transportation Monitoring on Roads, Medical Imaging etc. The main goal of this research is the detection and tracking moving object. In proposed approach, based on the pre-processing method in which there is extraction of the frames with reduction of dimension. It applies the morphological methods to clean the foreground image in the moving objects and texture based feature extract using component analysis method. After that, design a novel method which is optimized multilayer perceptron neural network. It used the optimized layers based on the Pbest and Gbest particle position in the objects. It finds the fitness values which is binary values (x_update, y_update) of swarm or object positions. Method and output achieved final frame creation of the moving objects in the video using BLOB ANALYSER In this research , an application is designed using MATLAB VERSION 2016a In activation function to re-filter the given input and final output calculated with the help of pre-defined sigmoid. In proposed methods to find the clear detection and tracking in the given dataset MOT, FOOTBALL, INDOOR and OUTDOOR datasets. To improve the detection accuracy rate, recall rate and reduce the error rates, False Positive and Negative rate and compare with the various classifiers such as KNN, MLPNN and J48 decision Tree.


Author(s):  
Ibraim Didmanidze ◽  
Givi Tsitskishvili

In scientific work it is shown, that our goal is to choose the desired option from variety of alternatives (in our case different options of loading-unloading operations on the vessel) or to take decision which is the best (optimal). Classification in this case is the grounds, as taking the choice is based on choosing certain class, which can be assigned to an alternative. Stratification and rating gives us wide option to make reasonable selection, or to take a kind of decision which will be optimal for the certain moment and occasion. These methods can be used with equal strength at all stages of the processes taking place in the area of current decision making management. This refers to the object of our study of course – solution of selecting optimal option to optimize loading-unloading operation on the vessel. It goes without saying that variety of alternatives doesn’t have any structure, thus abundance of each element was never structured randomly retrieved or no consideration has been proposed, and they are not a priority and in any order. Coming out of this it’s impossible to mention which alternative is better and which is less desirable. In order to solve the task of selecting a set of alternatives successfully, it is necessary, to make structure of the given abundance of alternatives in any form.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Filip Lorenz ◽  
Vit Janos ◽  
Dusan Teichmann ◽  
Michal Dorda

The article addresses creation of a mathematical model for a real problem regarding time coordination of periodic train connections operated on single-track lines. The individual train connections are dispatched with a predefined tact, and their arrivals at and departures to predefined railway stations (transfer nodes) need to be coordinated one another. In addition, because the train connections are operated on single-track lines, trains that pass each other in a predefined railway stations must be also coordinated. To optimize the process, mathematical programming methods are used. The presented article includes a mathematical model of the given task, and the proposed model is tested with real data. The calculation experiments were implemented using optimization software Xpress-IVE.


2013 ◽  
Vol 842 ◽  
pp. 494-499 ◽  
Author(s):  
Evgenii V. Murashkin ◽  
Marina V. Polonik

We propose a mathematical model of large elastocreep deformations. As part of the constructed mathematical model the problem of deformation of the material in the vicinity of microdefect was solved. Integro-differential dependence of external pressure from irreversible deformations and displacements was obtained. The laws of loading material from vector displacements were calculated. We have shown that the monotonous laws of deformation can lead to non-monotonous stress changes.


The HMM research and development project concept (RDPC) uses factor-driven research and reasoning concept that is supported by a behaviour-driven development environment or a natural language programming that can be easily adopted by any RDPC, where the HMM framework offers such a high level factors editing their logic implementation environment that it can be used by any RDPC researchers without any prior knowledge in computer sciences, technical, or even advanced mathematics. The RDPC is a meta-model that can be used for research topics on enterprise architecture, business transformation or decision-making systems, mathematical models-algorithms. It is supported by many real-life cases. The uniqueness of this RDPC also promotes the future transformation project's unbundling and the alignment of various enterprise resources including services, architecture standards, and strategies to support business transformation processes as the first.


2020 ◽  
Vol 16 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Nagendar Yerukala ◽  
V Kamakshi Prasad ◽  
Allam Apparao

For a stream cipher to be secure, the keystream generated by it should be uniformly random with parameter 1/2.Statistical tests check whether the given sequence follow a certain probability distribution. In this paper, we perform a detailed statistical analysis of various stream ciphers used in GSM 2G,3G, 4G and 5G communications. The sequences output by these ciphers are checked for randomness using the statistical tests defined by the NIST Test Suite. It should also be not possible to derive any information about secret key and the initial state ofthe cipher from the keystream. Therefore, additional statisticaltests based on properties like Correlation between Keystreamand Key, and Correlation between Keystream and IV are also performed. Performance analysis of the ciphers also has been done and the results tabulated. Almost all the ciphers pass thetests in the NIST test suite with 99% confidence level. For A5/3stream cipher, the correlation between the keystream and key is high and correlation between the keystream and IV is low when compared to other ciphers in the A5 family.


Sign in / Sign up

Export Citation Format

Share Document