Kajian Kualitas Tanah pada Lahan Gambut Terbakar di Kota Pontianak Provinsi Kalimantan Barat

2021 ◽  
Vol 19 (3) ◽  
pp. 517-524
Author(s):  
Rinto Manurung ◽  
Rossie Wiedya Nusantara ◽  
Ismahan Umran ◽  
W. Warganda

Kebakaran lahan gambut menyebabkan terjadinya perubahan sifat fisika, kimia dan biologi tanah gambut sehingga secara otomatis mempengaruhi kualitas tanah yang dinyatakan dengan Indeks Kualitas Tanah (IKT). Tujuan penelitian ini adalah menentukan indeks kualitas tanah dan faktor penentunya pada lahan gambut terbakar (GT) dan tidak terbakar (GTT). Penelitian dilakukan di Kelurahan Bansir Darat Kecamatan Pontianak Tenggara Kota Pontianak pada GTT  dan GT. Tahapan penelitian meliputi pengambilan sampel tanah pada masing-masing lahan, pengamatan dan pengukuran kedalaman gambut, ketebalan lapisan gambut dan kematangan gambut serta perhitungan jumlah cacing. Analisis sifat fisika tanah meliputi bobot isi, kadar air kapasitas lapang, porositas total; sifat kimia tanah terdiri dari reaksi tanah (pH), karbon organik (C-organik), Nitrogen total (N-total), rasio CN, posfor tersedia (P-tersedia), natrium, kalium, kalsium dan magnesium dapat dipertukarkan (Na-dd, K-dd, Ca-dd dan Mg-dd), kapasitas tukar kation (KTK), kejenuhan basa (KB), kadar abu; dan jumlah cacing tanah untuk sifat biologi tanah. Hasil penelitian menunjukkan GT dengan kematangan saprik memiliki kedalaman gambut lebih dangkal dibandingkan GTT dengan kematangan hemik. Kadar air dan porositas pada GT juga lebih rendah dibandingkan GTT. Kation basa GT lebih tinggi dibandingkan GTT meskipun kriteria keduanya sangat rendah. Parameter penentu kualitas tanah yaitu C-organik, CN rasio, N-total, P-tersedia, kalsium, natrium, kalium, kejenuhan basa, bobot isi, kadar air dan porositas. Kedua lahan memiliki kriteria IKT rendah namun GT memiliki nilai yang lebih tinggi (0,34) daripada GTT (0,27). Meskipun nilai IKT pada GT lebih tinggi, banyak dampak negatif yang ditimbulkan dari pembakaran lahan gambut. Karena itu pemerintah melarang pembakaran lahan dengan mengeluarkan kebijakan-kebijakan tentang pelarangan pembakaran hutan dan lahan gambut.AbstractPeatland fires cause changes in the physical, chemical and biological characteristics of the peat soil. It automatically affects the quality of the soil as stated by the Soil Quality Index (IKT). The purpose of this study was to determine the soil quality index and its determinants in burnt (GT) and unburnt (GTT) peatlands. The research was conducted in Bansir Darat Village, Southeast Pontianak District, Pontianak City on GT and GTT. The research stages included taking soil samples from each land, observing and measuring the depth of the peat, the thickness of the peat layer, the maturity of the peat and counting the number of worms as well. Analysis of soil physical characteristics including bulk density, moisture content of field capacity, total porosity; soil chemistry consists of C-organic, total nitrogen (N-total), CN ratio, available phosphorus (P-available), exchangeable sodium (Na-dd), potassium (K-dd), calcium-dd (Ca-dd)dan magnesium (Mg-dd), cation exchange capacity (CEC), base saturation (KB), content of ash; and the number of earth worms for soil biology property. The results showed that the physical characteristics of peat on GT had a shallower peat depth with sapric compared to GTT with hemic. The water content and porosity on GT are lower than GTT as well. The base cation of GT is higher than GTT even though the criteria for both are very low. The determinants of soil quality were C-organic, CN ratio, N-total, P-available, calcium, sodium, potassium, base saturation, content weight, moisture content and porosity. The Soil Quality Index of both lands have low criteria but GT has a higher value (0.34) than GTT (0.27). Even though the IKT value in GT is higher, there are many negative impacts caused by burning peatlands. Therefore, the government forbids burning of land by issuing policies to prohibit the burning of forests and peatlands.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Xu ◽  
Wenbao Mi ◽  
Nan Mi ◽  
Xingang Fan ◽  
Yao Zhou ◽  
...  

AbstractDesert steppe soil security issues have been the focus of attention. Therefore, to understand the impact of industrial activities on the soil quality of desert grasslands, this experiment investigated the Gaoshawo Industrial Concentration Zone in Yanchi County. Based on the distance and direction from the industrial park, sample plots were established at intervals of 1–2 km. A total of 82 surface soil samples (0–20 cm) representing different pollution sources were collected. The samples were analysed for pH, total nitrogen, total phosphorus, available phosphorus, available potassium, organic matter, copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn). The desert steppe soil quality was analysed based on the integrated fertility index (IFI) and the Nemerow pollution index (PN), followed by the calculation of the comprehensive soil quality index (SQI), which considers the most suitable soil quality indicators through a geostatistical model. The results showed that the IFI was 0.393, indicating that the soil fertility was relatively poor. Excluding the available potassium, the nugget coefficients of the fertility indicators were less than 25% and showed strong spatial autocorrelation. The average values of Cu, Cd, Cr, Pb and Zn were 21.64 ± 3.26, 0.18 ± 0.02, 44.99 ± 21.23, 87.18 ± 25.84, and 86.63 ± 24.98 mg·kg−1, respectively; the nugget coefficients of Cr, Pb and Zn were 30.79–47.35%. Pb was the main element causing heavy metal pollution in the study area. Higher PN values were concentrated north of the highway in the study area, resulting in lower soil quality in the northern region and a trend of decreasing soil quality from south to north. The results of this research showed that the average SQI was 0.351 and the soil quality was extremely low. Thus, industrial activities and transportation activities in the Gaoshawo Industrial Zone significantly impact the desert steppe soil quality index.


2018 ◽  
Vol 10 (10) ◽  
pp. 3477 ◽  
Author(s):  
Fuqiang Dai ◽  
Zhiqiang Lv ◽  
Gangcai Liu

Ecologically fragile cropland soils and intensive agricultural production are characteristic of the valley area of the Tibetan Plateau. A systematic assessment of soil quality is necessary and important for improving sustainable cropland management in this area. This study aims to establish a minimum data set (MDS) for soil quality assessment and generate an integrated soil quality index for sustainable cropland management in the Tibetan Plateau. Soil samples were collected from the 0–20 cm depths of agricultural land in the middle and lower reaches of the Lhasa River. These samples were analyzed by routine laboratory methods. Significant differences were identified via statistical test between different soil types and land use types for each soil property. Principal component analysis was used to define a MDS of indicators that determine soil quality. Consequently, effective porosity, pH, total organic C, total N, available P, and catalase were identified as the final MDS. The soil quality index was obtained by the fuzzy-set membership function and the linear weighted additive method. The soil quality index differed significantly between the soil types and land use types. The soil quality can be ranked based on their indices in the following order: 1. Grain land with meadow soils, 2. Grain land with steppe soils, 3. Greenhouse vegetable land with fluvo-aquic soils, 4. Grain land with fluvo-aquic soils. The soils with higher soil quality indices exhibited better soil structure, higher nutrient contents, and superior resistance to water and nutrient loss. While the intensive tillage practices associated with vegetable production could reduce the values for effective porosity, pH and catalase, the application of appropriate fertilizers increased the values for total organic C, total N and available P. Therefore, the MDS method is an effective and useful tool to identify the key soil properties for assessing soil quality, and provides guidance on adaptive cropland management to a variety of soil types and land use types.


2016 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Anggoro Prihutomo ◽  
Warih Hardanu ◽  
Atri Triana Kartikasari

<p>The impact of aquaculture activities has led to environmental degradation, especially ponds bottom soil quality. The purpose of this study was to assess the status of the ponds bottom soil quality in different aquaculture systems (traditional and intensive) in BLUPPB Karawang region in a flexible value of soil quality index (SQI). Twenty ponds consisting of 5 traditional of milkfish (<em>Chanos chanos</em>) juvenile rearing ponds and 5 traditional polyculture ponds, 5 intensive of <em>Litopenaeus </em><em>va</em><em>n</em><em>namei</em> shrimp ponds lined with plastic mulch and 5 intensive <em>L. vannamei </em>shrimp earthen ponds. Variables of soil quality parameters examined include physical, chemical and biological of pond bottom soil. Sediment ponds with a depth of 5-10 cm were taken for analysis. Data statistically analyzed using Anova, continued with pos hoc test HSD Tukey. The results showed the ponds soil quality (SQI) of BLUPPB Karawang area has an average of 0.38 ± 0.02 or included in low criteria. Aquaculture systems were not significant (p&gt; 5%) to the general status of ponds soil quality. Aquaculture systems (intensive and traditional) only gave a significant different (p&lt;5%) to the parameter of soil bulk density, c-organic, total N, C:N ratio, total S, total P and soil respiration. Stability of the ponds bottom soil chemical compositions over time make level of intensity does not significantly affect, beside routine sediment removal at the end of cycle in intensive culture.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sh. Yeilagi ◽  
Salar Rezapour ◽  
F. Asadzadeh

AbstractThe assessment of soil quality indices in waste leachate-affected soils is vital to understand the threats of land quality degradation and how to control it. In this respect, a study was conducted on the effects of uncontrolled landfill leachate on soil quality index (SQI) in calcareous agricultural lands using 28 soil variables. Using the total data set (TDS) and minimum data set (MDS) approaches, the SQI was compared between leachate-affected soils (LAS) and control soils by the integrated quality index (IQI) and nemoro quality index (NQI) methods. The results revealed that LAS were significantly enriched by soil salinity-sodicity indices including electrical conductivity (EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP), fertility indices including total N, available P and K, organic carbon, and cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, and Na), the available and total fractions of heavy metals (Zn, Cu, Cd, Pb, Ni). After the leachate got its way into the soil, the values of IQI and NQI were dropped ranging 5–16% and 6.5–13% for the TDS approach and 5–15.2% and 7.5–12.2 for the MDS approach, respectively. Clearly, the data showed that soil quality degradation was encouraged and stimulated by the leachate. Among the different models of SQI applied in the present study, IQI determined by MDS was the optimal model to estimate soil quality and predict crop yields given the analysis of the correlations among the SQI models, the correlations between the SQI models and wheat yield, and sensitivity index values.


2020 ◽  
Vol 8 (2) ◽  
pp. 2559-2568
Author(s):  
M Mujiyo ◽  
Yosua Yoga Setyawan ◽  
Aktavia Herawati ◽  
Hery Widijanto

Determination of soil quality in Giriwoyo Sub-district, Wonogiri Regency, will generate a Soil Quality Index which can be used as a reference for soil cultivation for optimal productivity. This research was a descriptive exploratory with a survey approach. The survey area consisted of 12 land mapping units (LMU) with 3 replications for each LMU. Determination of LMU based on soil type, land use, slope and rainfall. The parameters used were BD (bulk density), porosity, organic C, pH, CEC (cation exchange capacity), BS (base saturation), available P, available K, total N, and MBC (microbial biomass carbon) that represented the physical, chemical and biological properties of the soil. Principal Component Analysis (PCA) analysis was performed to obtain the Minimum Data Set (MDS). The Soil Quality Index (SQI) at each LMU was calculated by multiplying the PCA result score (Wi) with the score for each selected indicator (Si). The result showed that the Soil Quality Index at each LMU was low. The highest Soil Quality Index was found in fields land use with an SQI of 0.34. The soil indicator that limited the soil quality was available P.


2021 ◽  
Vol 8 (2) ◽  
pp. 527-537
Author(s):  
Mochamad Fikri Kurniawan ◽  
Mochtar Lutfi Rayes ◽  
Christanti Agustina

Soil quality is the ability of soil that plays a role in maintaining plant productivity, preserving and maintaining water availability and supporting human activities. Soil quality assessment is measured based on indicators that describe important soil processes based on the physical, chemical and biological properties of the soil. The level of soil quality in a plot of land is assessed based on the soil quality index. This research was conducted from August to December 2020 in the Supiturung Micro Watershed, Kediri Regency, East Java using a graphical survey method based on the Land Map Unit. Soil samples were taken at a depth of 0-20 cm at each observation point (20 points) for analysis in the laboratory. Soil quality indicators are determined based on key soil properties with the Minimum Data Set (MDS) method, with soil quality indicators from soil physical properties including texture, bulk density, porosity and soil chemical properties including pH, available-P, exchangeable-K, total-N, organic-C. Soil quality index was calculated by weighting soil quality indicators with criteria which divided into 5 classes, i.e. (i) very low class (0.00-0.19), (ii) low (0.20-0.39), (iii) moderate (0.40-0.59), (iv) good (0.60-0.79) and (v) very good (0.80-1.00). The results showed that the soil in land unit 2 had different limiting factor values on the percentage of sand and dust from the soil texture, the total-N content of the soil and the organic-C content of the soil which caused differences in soil quality. There are two indicators of soil quality, namely the percentage of dust from the soil texture and the total N content of the soil which has the most influence on the soil quality index.


2015 ◽  
Vol 38 (3) ◽  
pp. 201-208
Author(s):  
Ram Sharma ◽  
M.K. Gupta

Physiochemical attributes of soil under Schima-Castanopsis forest managed by the local community as Community Forest user’s group in Lesser Himalayan meta-sedimentary zone in Hemja VDC of Kaski district, western Nepal was estimated to evaluate the soil fertility status and soil quality Index. Soil organic carbon was varied from 0.62 to 3.73 per cent and soil organic matter 1.06 to 6.41 per cent in different layers in the soils at different altitudes. The mean soil pH of all soil layers was moderately acidic. The soil acidity showed decreasing trend with increasing depths. The bulk density was increases with increasing soil depths and varied from 0.78 to 1.22 g/cm3 in different soil layers. Total nitrogen varied from 0.11 percent in lowest layer (90-120 cm) to 0.40 in top layer (0-15 cm) at different elevation. The available phosphorus in different soil layers varied from 1.48 to14.90 mg kg-1. The layer wise mean value of available phosphorus was observed maximum in lowest soil depth 90-120 cm (11.76 mg kg-1) followed by 0-15 cm layer (10.13 mg kg-1). Exchangeable potassium content under in all soil depths varied from 29.40 mg kg-1 to 72.85 mg kg-1. The layer wise exchangeable potassium content was observed maximum in 90-120 cm depth (64.17 mg kg-1) and 60-90 cm (64.05 mg kg-1) followed by 0-15 cm soil depth (58.23 mg kg-1). Differences were tested through one way ANOVA of the studied soil parameters in different altitudes and observed that they were statistically significant at 0.05 level (p = <0.05). Pearson correlation analysis among the different soil parameters in TCF were showed statistically significant at the 0.01 level (2 – tailed) and 0.05 levels (2 - tailed). The Soil Quality Index of surface layer at all altitudes was higher and varied from 0.62 to 0.76 (fair to good) as compared to subsurface layer that was ranged from 0.54 to 0.56 (fair). The SQI was decreased with increasing soil depths. An average SQI in TCF was 0.60 (fair) up to 120 cm depths.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


Sign in / Sign up

Export Citation Format

Share Document