scholarly journals Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau

2018 ◽  
Vol 10 (10) ◽  
pp. 3477 ◽  
Author(s):  
Fuqiang Dai ◽  
Zhiqiang Lv ◽  
Gangcai Liu

Ecologically fragile cropland soils and intensive agricultural production are characteristic of the valley area of the Tibetan Plateau. A systematic assessment of soil quality is necessary and important for improving sustainable cropland management in this area. This study aims to establish a minimum data set (MDS) for soil quality assessment and generate an integrated soil quality index for sustainable cropland management in the Tibetan Plateau. Soil samples were collected from the 0–20 cm depths of agricultural land in the middle and lower reaches of the Lhasa River. These samples were analyzed by routine laboratory methods. Significant differences were identified via statistical test between different soil types and land use types for each soil property. Principal component analysis was used to define a MDS of indicators that determine soil quality. Consequently, effective porosity, pH, total organic C, total N, available P, and catalase were identified as the final MDS. The soil quality index was obtained by the fuzzy-set membership function and the linear weighted additive method. The soil quality index differed significantly between the soil types and land use types. The soil quality can be ranked based on their indices in the following order: 1. Grain land with meadow soils, 2. Grain land with steppe soils, 3. Greenhouse vegetable land with fluvo-aquic soils, 4. Grain land with fluvo-aquic soils. The soils with higher soil quality indices exhibited better soil structure, higher nutrient contents, and superior resistance to water and nutrient loss. While the intensive tillage practices associated with vegetable production could reduce the values for effective porosity, pH and catalase, the application of appropriate fertilizers increased the values for total organic C, total N and available P. Therefore, the MDS method is an effective and useful tool to identify the key soil properties for assessing soil quality, and provides guidance on adaptive cropland management to a variety of soil types and land use types.

2020 ◽  
Vol 8 (2) ◽  
pp. 2559-2568
Author(s):  
M Mujiyo ◽  
Yosua Yoga Setyawan ◽  
Aktavia Herawati ◽  
Hery Widijanto

Determination of soil quality in Giriwoyo Sub-district, Wonogiri Regency, will generate a Soil Quality Index which can be used as a reference for soil cultivation for optimal productivity. This research was a descriptive exploratory with a survey approach. The survey area consisted of 12 land mapping units (LMU) with 3 replications for each LMU. Determination of LMU based on soil type, land use, slope and rainfall. The parameters used were BD (bulk density), porosity, organic C, pH, CEC (cation exchange capacity), BS (base saturation), available P, available K, total N, and MBC (microbial biomass carbon) that represented the physical, chemical and biological properties of the soil. Principal Component Analysis (PCA) analysis was performed to obtain the Minimum Data Set (MDS). The Soil Quality Index (SQI) at each LMU was calculated by multiplying the PCA result score (Wi) with the score for each selected indicator (Si). The result showed that the Soil Quality Index at each LMU was low. The highest Soil Quality Index was found in fields land use with an SQI of 0.34. The soil indicator that limited the soil quality was available P.


2021 ◽  
Vol 8 (2) ◽  
pp. 527-537
Author(s):  
Mochamad Fikri Kurniawan ◽  
Mochtar Lutfi Rayes ◽  
Christanti Agustina

Soil quality is the ability of soil that plays a role in maintaining plant productivity, preserving and maintaining water availability and supporting human activities. Soil quality assessment is measured based on indicators that describe important soil processes based on the physical, chemical and biological properties of the soil. The level of soil quality in a plot of land is assessed based on the soil quality index. This research was conducted from August to December 2020 in the Supiturung Micro Watershed, Kediri Regency, East Java using a graphical survey method based on the Land Map Unit. Soil samples were taken at a depth of 0-20 cm at each observation point (20 points) for analysis in the laboratory. Soil quality indicators are determined based on key soil properties with the Minimum Data Set (MDS) method, with soil quality indicators from soil physical properties including texture, bulk density, porosity and soil chemical properties including pH, available-P, exchangeable-K, total-N, organic-C. Soil quality index was calculated by weighting soil quality indicators with criteria which divided into 5 classes, i.e. (i) very low class (0.00-0.19), (ii) low (0.20-0.39), (iii) moderate (0.40-0.59), (iv) good (0.60-0.79) and (v) very good (0.80-1.00). The results showed that the soil in land unit 2 had different limiting factor values on the percentage of sand and dust from the soil texture, the total-N content of the soil and the organic-C content of the soil which caused differences in soil quality. There are two indicators of soil quality, namely the percentage of dust from the soil texture and the total N content of the soil which has the most influence on the soil quality index.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Nastaran Pouladi ◽  
Ali Asghar Jafarzadeh ◽  
Farzin Shahbazi ◽  
Mohammad Ali Ghorbani ◽  
Mogens H. Greve

2016 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Anggoro Prihutomo ◽  
Warih Hardanu ◽  
Atri Triana Kartikasari

<p>The impact of aquaculture activities has led to environmental degradation, especially ponds bottom soil quality. The purpose of this study was to assess the status of the ponds bottom soil quality in different aquaculture systems (traditional and intensive) in BLUPPB Karawang region in a flexible value of soil quality index (SQI). Twenty ponds consisting of 5 traditional of milkfish (<em>Chanos chanos</em>) juvenile rearing ponds and 5 traditional polyculture ponds, 5 intensive of <em>Litopenaeus </em><em>va</em><em>n</em><em>namei</em> shrimp ponds lined with plastic mulch and 5 intensive <em>L. vannamei </em>shrimp earthen ponds. Variables of soil quality parameters examined include physical, chemical and biological of pond bottom soil. Sediment ponds with a depth of 5-10 cm were taken for analysis. Data statistically analyzed using Anova, continued with pos hoc test HSD Tukey. The results showed the ponds soil quality (SQI) of BLUPPB Karawang area has an average of 0.38 ± 0.02 or included in low criteria. Aquaculture systems were not significant (p&gt; 5%) to the general status of ponds soil quality. Aquaculture systems (intensive and traditional) only gave a significant different (p&lt;5%) to the parameter of soil bulk density, c-organic, total N, C:N ratio, total S, total P and soil respiration. Stability of the ponds bottom soil chemical compositions over time make level of intensity does not significantly affect, beside routine sediment removal at the end of cycle in intensive culture.</p>


2021 ◽  
Vol 19 (3) ◽  
pp. 517-524
Author(s):  
Rinto Manurung ◽  
Rossie Wiedya Nusantara ◽  
Ismahan Umran ◽  
W. Warganda

Kebakaran lahan gambut menyebabkan terjadinya perubahan sifat fisika, kimia dan biologi tanah gambut sehingga secara otomatis mempengaruhi kualitas tanah yang dinyatakan dengan Indeks Kualitas Tanah (IKT). Tujuan penelitian ini adalah menentukan indeks kualitas tanah dan faktor penentunya pada lahan gambut terbakar (GT) dan tidak terbakar (GTT). Penelitian dilakukan di Kelurahan Bansir Darat Kecamatan Pontianak Tenggara Kota Pontianak pada GTT  dan GT. Tahapan penelitian meliputi pengambilan sampel tanah pada masing-masing lahan, pengamatan dan pengukuran kedalaman gambut, ketebalan lapisan gambut dan kematangan gambut serta perhitungan jumlah cacing. Analisis sifat fisika tanah meliputi bobot isi, kadar air kapasitas lapang, porositas total; sifat kimia tanah terdiri dari reaksi tanah (pH), karbon organik (C-organik), Nitrogen total (N-total), rasio CN, posfor tersedia (P-tersedia), natrium, kalium, kalsium dan magnesium dapat dipertukarkan (Na-dd, K-dd, Ca-dd dan Mg-dd), kapasitas tukar kation (KTK), kejenuhan basa (KB), kadar abu; dan jumlah cacing tanah untuk sifat biologi tanah. Hasil penelitian menunjukkan GT dengan kematangan saprik memiliki kedalaman gambut lebih dangkal dibandingkan GTT dengan kematangan hemik. Kadar air dan porositas pada GT juga lebih rendah dibandingkan GTT. Kation basa GT lebih tinggi dibandingkan GTT meskipun kriteria keduanya sangat rendah. Parameter penentu kualitas tanah yaitu C-organik, CN rasio, N-total, P-tersedia, kalsium, natrium, kalium, kejenuhan basa, bobot isi, kadar air dan porositas. Kedua lahan memiliki kriteria IKT rendah namun GT memiliki nilai yang lebih tinggi (0,34) daripada GTT (0,27). Meskipun nilai IKT pada GT lebih tinggi, banyak dampak negatif yang ditimbulkan dari pembakaran lahan gambut. Karena itu pemerintah melarang pembakaran lahan dengan mengeluarkan kebijakan-kebijakan tentang pelarangan pembakaran hutan dan lahan gambut.AbstractPeatland fires cause changes in the physical, chemical and biological characteristics of the peat soil. It automatically affects the quality of the soil as stated by the Soil Quality Index (IKT). The purpose of this study was to determine the soil quality index and its determinants in burnt (GT) and unburnt (GTT) peatlands. The research was conducted in Bansir Darat Village, Southeast Pontianak District, Pontianak City on GT and GTT. The research stages included taking soil samples from each land, observing and measuring the depth of the peat, the thickness of the peat layer, the maturity of the peat and counting the number of worms as well. Analysis of soil physical characteristics including bulk density, moisture content of field capacity, total porosity; soil chemistry consists of C-organic, total nitrogen (N-total), CN ratio, available phosphorus (P-available), exchangeable sodium (Na-dd), potassium (K-dd), calcium-dd (Ca-dd)dan magnesium (Mg-dd), cation exchange capacity (CEC), base saturation (KB), content of ash; and the number of earth worms for soil biology property. The results showed that the physical characteristics of peat on GT had a shallower peat depth with sapric compared to GTT with hemic. The water content and porosity on GT are lower than GTT as well. The base cation of GT is higher than GTT even though the criteria for both are very low. The determinants of soil quality were C-organic, CN ratio, N-total, P-available, calcium, sodium, potassium, base saturation, content weight, moisture content and porosity. The Soil Quality Index of both lands have low criteria but GT has a higher value (0.34) than GTT (0.27). Even though the IKT value in GT is higher, there are many negative impacts caused by burning peatlands. Therefore, the government forbids burning of land by issuing policies to prohibit the burning of forests and peatlands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sh. Yeilagi ◽  
Salar Rezapour ◽  
F. Asadzadeh

AbstractThe assessment of soil quality indices in waste leachate-affected soils is vital to understand the threats of land quality degradation and how to control it. In this respect, a study was conducted on the effects of uncontrolled landfill leachate on soil quality index (SQI) in calcareous agricultural lands using 28 soil variables. Using the total data set (TDS) and minimum data set (MDS) approaches, the SQI was compared between leachate-affected soils (LAS) and control soils by the integrated quality index (IQI) and nemoro quality index (NQI) methods. The results revealed that LAS were significantly enriched by soil salinity-sodicity indices including electrical conductivity (EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP), fertility indices including total N, available P and K, organic carbon, and cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, and Na), the available and total fractions of heavy metals (Zn, Cu, Cd, Pb, Ni). After the leachate got its way into the soil, the values of IQI and NQI were dropped ranging 5–16% and 6.5–13% for the TDS approach and 5–15.2% and 7.5–12.2 for the MDS approach, respectively. Clearly, the data showed that soil quality degradation was encouraged and stimulated by the leachate. Among the different models of SQI applied in the present study, IQI determined by MDS was the optimal model to estimate soil quality and predict crop yields given the analysis of the correlations among the SQI models, the correlations between the SQI models and wheat yield, and sensitivity index values.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
J. Ryschawy ◽  
M. A. Liebig ◽  
S. L. Kronberg ◽  
D. W. Archer ◽  
J. R. Hendrickson

Integrated crop-livestock systems can have subtle effects on soil quality over time, particularly in semiarid regions where soil responses to management occur slowly. We tested if analyzing temporal trajectories of soils could detect trends in soil quality data which were not detected using traditional statistical and index approaches. Principal component and cluster analyses were used to assess the evolution in ten soil properties at three sampling times within two production systems (annually cropped, perennial grass). Principal component 1 explained 33% of the total variance of the complete dataset and corresponded to gradients in extractable N, available P, and C : N ratio. Principal component 2 explained 25.4% of the variability and corresponded to gradients of soil pH, soil organic C, and total N. While previous analyses found no differences in Soil Quality Index (SQI) scores between production systems, annually cropped treatments and perennial grasslands were clearly distinguished by cluster analysis. Cluster analysis also identified greater dispersion between plots over time, suggesting an evolution in soil condition in response to management. Accordingly, multivariate statistical techniques serve as a valuable tool for analyzing data where responses to management are subtle or anticipated to occur slowly.


2021 ◽  
Vol 52 (4) ◽  
pp. 1058-1069
Author(s):  
Hamad & et al.

The objective of this study was to identify the locations sensitivity to land desertification based on the Mediterranean Desertification and Land Use (MEDALUS) approach by the Geographic Information Systems (GIS) in the south of Maysan governorate at Iraq for mapping environmentally sensitive areas to desertification. Three indicators, which included climate, vegetation, and soil, were employed to estimate the ESAI and then to classify the land in critical, fragile potentially, and non-influenced sensitive areas. The results of the soil quality index (SQI) indicated that 25% of the studied area was classified as moderate quality and 21% was low quality while 54% was very low quality. Vegetation qualities were classified into moderate and low quality 19% and 81%, respectively, and climate quality was classified as moderate.


2018 ◽  
Vol 1 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Pramod Ghimire ◽  
Balram Bhatta ◽  
Basudev Pokhrel ◽  
Ishu Shrestha

Soil quality is the capacity of soil to sustain biological productivity and environmental quality. Assessment of soil quality in different land use systems is essential as inappropriate land use management can degrade and deteriorate its function and stability. In this regard this study was carried out to evaluate soil quality of different land use types in Chure region of central Nepal. Soil quality index (SQI) was determined on the basis of the soil physiochemical parameters. Soil properties like soil pH, organic matter (OM), total nitrogen (TN), available potassium (AK), and available phosphorous (AP) were significantly affected by land uses types. Forest soil had the highest soil quality index (0.82) followed by bari (0.66), khet (0.64), and degraded land (0.40). Of the soil properties studied, total nitrogen and soil organic matter had the determining role in making significant impacts in the SQI among the different land uses. Hence, the results of this study can be important tool for planner, policy makers, and scientific community to frame appropriate land use management strategy.


Sign in / Sign up

Export Citation Format

Share Document