In Silico Screening Anticancer of Six Triterpenoids toward miR-494 and TNF-α Targets

2020 ◽  
Vol 23 (4) ◽  
pp. 117-123
Author(s):  
Vikra Ardiansyah Zaini ◽  
Purwantiningsih Sugita ◽  
Luthfan Irfana ◽  
Suminar Setiati Achmadi

Hepatocellular carcinoma (HCC) accounts for up to 90% of all primary liver cancers worldwide. Cinobufagin is recognized to inhibit miR-494 as the HCC target. Increased expression of TNF-α results in an inadequate response to liver anticancer drugs. The models in this study were cinobufagin, cycloartenol, and ethyl acetate fractions of Ganoderma lucidum, 2–5. Seven docking targets in this study were Akt, ERK1, ERK2, PI3K, TNF-α, TNFR1, and TNFR2. Cycloartenol and compound 4 comply with Veber’s rules, Lipinski’s rule of 5, and demonstrate moderate toxicity. The action implies a potential docking target since it produces bond affinities with the compound 2–5 that agree with the IC50 in the literature, which is based on in vitro experiments. Akt as a receptor target is AZD5363. Cycloartenol shows a low ability to inhibit Akt. Conversely, compound 4 inhibits the Akt better than that of cycloartenol, although it is not as good as cinobufagin and AZD5363. Therefore, compound 4, a triterpenoid with a basic framework of lanostane has the potential to be an anticancer candidate for the liver.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yan Xu ◽  
Yue Zhang

Abstract Background and Aims Ischemia-reperfusion injury (IRI) is the outcome of an inflammatory process and tubular cell death that is triggered by undergoing a transient reduction or cessation of blood flow and following by reperfusion. Unresolved IRI can contribute to chronic kidney disease even death. Our aims is to investigate the protective effect of hyperin on ischemia-reperfusion renal injury (IRI) and its possible mechanism. Method ① The transcriptome chip data of multiple IRI models were selected from the NCBI GEO DateSets database and a number of key proteins that could participate in IRI were screened out (the fold increase was greater than 2 fold and was statistically significant). Network and transcript binding motif analysis was performed to determine the best binding protein. ② C57BL / 6J mice were selected and randomly divided into normal group, sham operation group, IRI group (bilateral renal pedicle clamping for 45min), hyperin + IRI group (50mg / kg.d per day, 7 days before surgery ), DMSO + IRI group (7 days before the operation, the same amount of DMSO was administered to the stomach every day, and the operation was the same as AKI), with 6 rats in each group. Renal tissue and blood were collected 24 hours after operation for testing. ③ In vitro experiments, human proximal tubule epithelial cells (HK-2) were selected and divided into hypoxia 3, 6, 9, 12, 24, 36, and 48h for reoxygenation of 1, 3, and 6h respectively. Relevant indicators for RT-PCR detection were determined Optimal hypoxia time. The drug safe concentration was selected according to 0, 5, 10, 25, 50, 100, 200, 400 μg / ml hyperin pre-treatment for 12 hours, and the CCK8 reagent was added for 2 hours to measure the absorbance at 450 nm. The cells were randomly divided into normal group, hypoxia group, hypoxia + DMSO group, hypoxia + hyperin group, and related indexes were detected by RT-PCR and Western Blot. ④ Obtain the tertiary structure of the protein and the three-dimensional structure of the hyperin molecule from the RCSB Protein Data Bank website and the PubChem compound database, and use molecular docking technology to determine the proteins that can bind to hyperin using autodock software and analyze their binding ability. Results Bioinformatics analysis suggested that STK40 protein is one of the key factors of IRI and may be a target for preventing and treating diseases. In vivo experiments showed that compared with the normal group and the sham operation group, the levels of serum creatinine, blood urea nitrogen, and kim-1 in rats were significantly increased after AKI, and HE staining of pathological sections showed an increase in renal tubular injury scores. Significantly decreased (P<0.05); RT-PCR results showed that kim-1, caspase-3, NF-κB, IL-6, TNF-α increased significantly after AKI, STK40, Bcl2 / BAX decreased, and the above after hyperin The indicators changed in opposite directions (P <0.05). In vitro experiments: The best time for hypoxia is 24h hypoxia + 1h reoxygenation; compared with the control group, the drug concentration is <100 μg / mL and the cell proliferation activity rate is> 90%, so the hyperin concentration was selected as 50 μg / mL (P < 0.05); RT-PCR results showed that Hif1-α, caspase-3, NF-κB, IL-6, TNF-α significantly increased, and STK40, Bcl2 / BAX decreased compared with the normal group. After administration of hyperin, the above indexes changed in opposite directions (P <0.05). Conclusion In this study, using molecular docking technology and constructing IRI mice model, it was confirmed that hyperin can reduce IRI and exert a protective effect on IRI by inhibiting STK40 expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Sun ◽  
Shanzhai Wei ◽  
Yilai Zhang ◽  
Jia Li

Objective. To explore the protective roles of Astragalus polysaccharide (APS) on acute renal injury (AKI) induced by sepsis. Methods. Firstly, an animal model of sepsis-induced AKI was established by injecting lipopolysaccharide (LPS) into mice. The mice were pretreated with an intraperitoneal injection of 1, 3, and 5 mg/(kg·d) APS for 3 consecutive days. The severity of kidney injury was then scored by histopathological analysis, and the concentrations of serum urea nitrogen (BUN) and serum creatinine (SCr) and the levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were determined as well. In in vitro experiments, lipopolysaccharide (LPS) was used to induce HK-2 cell injury to establish a sepsis-induced AKI cell model, and the cell counting kit-8 (CCK-8) method was performed to determine the cytotoxicity and appropriate experimental concentration of APS. Then, cells were divided into the control, LPS, and APS+LPS groups. Cell apoptosis and inflammation-related TNF-α, IL-1β, IL-6, and IL-8 were determined by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The microscope was used to observe the morphological changes of cells, and the cell migration ability was measured by wound healing assay. RT-qPCR and Western blot assay were used to determine the mRNA and protein levels of apoptosis-related factors including caspase-3, caspase-9, Bax, and Bcl-2; endoplasmic reticulum stress- (ERS-) related biomarkers including C/EBP homologous protein (CHOP) and glucose-regulated protein78 (GRP78); and epithelial-mesenchymal transition- (EMT-) related biomarkers including E-cadherin, Snail, α-smooth muscle actin (α-SMΑ), and Vimentin. Results. In vivo experiments in mice showed that APS can reverse LPS-induced kidney damage in a concentration-dependent manner ( P < 0.05 ); the concentrations of BUN and Scr were increased (all P < 0.05 ); similarly, the levels of TNF-α and IL-1β were increased as well (all P < 0.05 ). In in vitro experiments, the results showed that LPS can significantly cause HK-2 cell damage and induce apoptosis, inflammation, ERS, and EMT. When APS concentration was in the range of 0-200 μg/mL, it had no cytotoxicity in HK-2 cells, and 100 μg/mL APS pretreatment could significantly mitigate the decrease of cell activity induced by LPS ( P < 0.05 ). Compared with the LPS group, APS pretreatment could inhibit the expression of inflammatory factors including TNF-α, IL-1 β, IL-6, and IL-8 (all P < 0.05 ), reducing the number of apoptotic cells ( P < 0.05 ), suppressing the expression of caspase-3, caspase-9, and Bax, but upregulating the expression levels of Bcl-2. In ERS, APS pretreatment inhibited LPS-induced upregulation of CHOP and GRP78. Moreover, in EMT, APS pretreatment could inhibit the morphological changes of cells, downregulate the migration, decrease the expression of EMT biomarkers, and inhibit the process of EMT. Conclusion. APS could alleviate sepsis-induced AKI by regulating inflammation, apoptosis, ERS, and EMT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Hu ◽  
Fangzhou Jiao ◽  
Lan Zhang ◽  
Yingan Jiang

Liver cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death. Most (75–85%) primary liver cancers occurring worldwide are hepatocellular carcinoma (HCC). The development of resistance and other drug related side effects are the prime reasons for the failure of treatment. Therefore, developing high-efficacy and low-toxicity natural anticancer agents is greatly needed in the treatment of HCC. Dihydrotanshinone (DHTS) is widely used for promoting blood circulation and antitumor. The aim of the present study was to investigate the effect and mechanism of DHTS-induced apoptosis of HCC, both in vitro and in vivo. We found that DHTS inhibited the growth of several HCC cells (HCCLM3, SMMC7721, Hep3B and HepG2). DHTS induced the apoptosis of SMMC7721 cells. Immunofluorescence results have showed that DHTS decreased STAT3 nuclear translocation. Moreover, Western blot results have demonstrated that DHTS suppressed the activation of JAK2/STAT3 signaling pathway. In addition, xenograft results have showed that DHTS suppressed tumor growth of SMMC7721 cells in vivo by inhibiting the p-STAT3. Thus, we demonstrated that DHTS could inhibit HCC by suppressing the JAK2/STAT3 pathway. DHTS has potential to be a chemotherapeutic agent in HCC and merits further clinical investigation.


Liver Cancer ◽  
2021 ◽  
Author(s):  
Nicola Mosca ◽  
Fatma Zohra Khoubai ◽  
Sandrine Fedou ◽  
Juan Carrillo-Reixach ◽  
Stefano Caruso ◽  
...  

Introduction: Hepatocellular carcinoma and hepatoblastoma are two liver cancers characterized by gene deregulations, chromosomal rearrangements, and mutations in Wnt/beta-catenin (Wnt) pathway-related genes. LHX2, a transcriptional factor member of the LIM homeobox gene family, has important functions in embryogenesis and liver development. LHX2 is oncogenic in many solid tumors and leukemia but its role in liver cancer is unknown. Methods: We analyzed the expression of LHX2 in hepatocellular carcinoma and hepatoblastoma samples using various transcriptomic datasets and biological samples. The role of LHX2 was studied using lentiviral transduction, in vitro cell-based assays (growth, migration, senescence, apoptosis), molecular approaches (phospho-kinase arrays, RNA-seq), bioinformatics and two in vivo models in chicken and Xenopus embryos. Results: We found a strong connection between LHX2 down-regulation and Wnt activation in these two liver cancers. In hepatoblastoma, LHX2 downregulation correlated with multiple poor outcome parameters including higher patient age, intermediate- and high-risk tumors and low patients’ survival. Forced expression of LHX2 reduced the proliferation, migration and survival of hepatoma cells in vitro through the inactivation of MAPK/ERK and Wnt signals. In vivo, LHX2 impeded the development of tumors in chick embryos and repressed the Wnt pathway in Xenopus embryos. RNA-sequencing data and bioinformatic analyses confirmed the deregulation of many biological functions and molecular processes associated with cell migration, cell survival and liver carcinogenesis in LHX2-expressing hepatoma cells. At a mechanistic level, LHX2 mediated the disassembling of beta-catenin/T-cell factor 4 complex and induced expression of multiple inhibitors of Wnt (e.g. TLE/Groucho) and MAPK/ERK (e.g. DUSPs) pathways. Conclusion: Collectively, our findings demonstrate a tumor suppressive function of LHX2 in adult and pediatric liver cancers.


2020 ◽  
Vol 33 (6) ◽  
pp. 1251-1261 ◽  
Author(s):  
Junjun Zhang ◽  
Yiming Mi ◽  
Ruwen Zhou ◽  
Zhangsuo Liu ◽  
Bo Huang ◽  
...  

AbstractPrevious studies have shown that secretory IgA (sIgA) was critically involved in IgA nephropathy (IgAN) immune responses. Toll-like receptors (TLRs), especially TLR4 which participates in mucosal immunity, may be involved in the pathogenesis of IgAN. The purpose of this study was to investigate whether sIgA and TLR4 interact to mediate kidney damage in IgAN patients. IgAN patients with positive sIgA deposition in renal tissues were screened by immunofluorescence assay. Patient salivary sIgA (P-sIgA) was collected and purified by jacalin affinity chromatography. Salivary sIgA from healthy volunteers was used as a control (N-sIgA). Expression of TLR4, MyD88, NF-κB, TNF-α, IL-6, and MCP-1 were detected in the mesangial area of IgAN patients by immunohistochemistry, the expression levels in patients with positive sIgA deposition were higher than that with negative sIgA deposition. Human renal mesangial cells (HRMCs) were cultured in vitro, flow cytometry showed that P-sIgA bound HRMCs significantly better than N-sIgA. HRMCs were cultured in the presence of sIgA (400 μg/mL) for 24 h, compared with cells cultured with N-sIgA, HRMCs cultured in vitro with P-sIgA showed enhanced expression of TLR4, increased secretion of TNF-α, IL-6, and MCP-1, and increased expression of MyD88/NF-κB. TLR4 shRNA silencing and NF-κB inhibition both reduced the ability of HRMCs to synthesize TNF-α, IL-6, and MCP-1. Our results indicate that sIgA may induce high expression of TLR4 in HRMCs and further activate downstream signalling pathways, prompting HRMCs to secrete multiple cytokines and thereby mediating kidney damage in IgAN patients.


2021 ◽  
Author(s):  
Cui Yang ◽  
Zhukai Cong ◽  
Feng Zhao ◽  
Ziyuan Shen ◽  
Xi Zhu

Abstract Background: Acute respiratory distress syndrome (ARDS), a common and critical disease, is clinically characterized by uncontrolled inflammation and alveolar-capillary barrier disruption. Estrogen can reportedly alleviate ARDS caused by numerous insults in mice. Moreover, the estradiol receptors α, not β,participated in E2-induced attenuation of ARDS. But the role of another estradiol receptor, G protein-coupled estradiol receptor 1 (GPER1) in ARDS are not undertood. This study is aimed to investigate the effect of GPER activation on LPS-induced ARDS in mice.Methods: Female mice were randomly subjected to bilateral ovarectomy (OVX) or sham surgery two weeks before lung injury. The GPER-selective agonist G1 or vehicle were intraperitoneally injected 0.5 h before intratracheal administration of LPS or phosphate-buffered saline in male and female mice. After 24 h, mice were sacrificed to collect blood, bronchoalveolar lavage fluid (BALF), and lung tissue. Histological injury and inflammatory cell infiltration in lung tissue, as well as cytokine and protein concentrations in BALF were determined. In vitro experiments were also performed on alveolar macrophages (MH-S cells) to investigate the effect of GPER activation on LPS-induced inflammatory responses.Results: Activation of GPER by G1 administration significantly ameliorated lung pathological damage, attenuated alveolar capillary barrier destruction, inhibited recruitment of inflammatory cells into alveoli, and decreased concentrations of the pro-inflammatory factors tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in BALF of LPS-administered male and OVX female mice, but not intact female mice. In vitro experiments demonstrated that G1 pretreatment significantly inhibited LPS-mediated increases of TNF-α, IL-6, and MIP2 in a dose-dependent manner.Conclusions: These results demonstrated that GPER activation attenuated lung injury of male and OVX female mice by inhibiting the inflammatory response of alveolar macrophages.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 202
Author(s):  
Lan Zhang ◽  
Min Yan ◽  
Kun Chen ◽  
Qikang Tian ◽  
Junying Song ◽  
...  

A new platform for triptolide (TP) delivery was prepared by conjugating TP to a carboxylmethyl chitosan (CMCS). Compared with the natural TP, the TP-conjugate (TP-CMCS) containing TP of ~5 wt% exhibited excellent aqueous solubility (>5 mg/mL). Results of in vitro experiments showed that TP-CMCS could relieve TP-induced inhibition on RAW264.7 cells and apoptosis, respectively. Compared with the TP group, TP-CMCS could effectively alleviate the toxicity injury of TP and decreased the mortality rate of the mice (p < 0.05). TP-CMCS did not cause much damage to the liver (AST and ALT) and kidney (BUN and CRE) (p < 0.05). After administration, the levels of IL-6, IL-1β, and TNF-α decreased, and the arthritis detumescence percentages increased significantly, and the bony erosion degree was distinctly decreased in the TP-CMCS groups and TP group. Our results suggested that TP-CMCS was a useful carrier for the treatment of RA, which enhanced aqueous solubility of free TP and reduced drug toxicity in vitro and in vivo.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1698
Author(s):  
Yu-Yun Shao ◽  
Nai-Yun Sun ◽  
Yung-Ming Jeng ◽  
Yao-Ming Wu ◽  
Chiun Hsu ◽  
...  

Background: The kinesin Eg5, a mitosis-associated protein, is overexpressed in many cancers. Here we explored the clinical significance of Eg5 in hepatocellular carcinoma (HCC). Methods: HCC tissues from surgical resection were collected. Total RNA was prepared from tumorous and nontumorous parts. Eg5 expression levels were correlated with overall survival (OS) and disease-free survival (DFS). In vitro efficacy of LGI-147, a specific Eg5 inhibitor, was tested in HCC cell lines. In vivo efficacy of Eg5 inhibition was investigated in a xenograft model. Results: A total of 108 HCC samples were included. The patients were divided into three tertile groups with high, medium, and low Eg5 expression levels. OS of patients with low Eg5 expression was better than that of patients with medium and high Eg5 expression (median, 155.6 vs. 75.3 vs. 57.7 months, p = 0.002). DFS of patients with low Eg5 expression was also better than that of patients with medium and high Eg5 expression (median, 126.3 vs. 46.2 vs. 39.4 months, p = 0.001). In multivariate analyses, the associations between Eg5 expression and OS (p < 0.001) or DFS remained (p < 0.001). LGI-147 reduced cell growth via cell cycle arrest and apoptosis and induced accumulation of abnormal mitotic cells. In the xenograft model, the tumor growth rate under LGI-147 treatment was significantly slower than under the control. Conclusion: High Eg5 expression was associated with poor HCC prognosis. In vitro and in vivo evidence suggests that Eg5 may be a reasonable therapeutic target for HCC.


2018 ◽  
Vol 48 (2) ◽  
pp. 540-555 ◽  
Author(s):  
Zhi-an Ling ◽  
Dan-dan Xiong ◽  
Rong-mei Meng ◽  
Jie-Mei Cen ◽  
Na Zhao ◽  
...  

Background/Aims: Accumulated evidence indicates that lncRNA NEAT1 has important roles in various malignant tumors. In this study, we conducted a comprehensive analysis to explore the exact role of NEAT1 in hepatocellular carcinoma (HCC). Methods: The effects of NEAT1 on cell proliferation, apoptosis, migration, and invasion were measured by in vitro experiments. The expression level and clinical value of NEAT1 in HCC was evaluated based on data from The Cancer Genome Atlas (TCGA), Oncomine, and in-house real-time quantitative (RT-qPCR). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network analyses were conducted to investigate the potential molecular mechanisms of NEAT1. Results: NEAT1 siRNA not only inhibited proliferation, migration, and invasion of HCC cells but also induced HCC cell apoptosis. A total of four records from TCGA, Oncomine, and RT-qPCR analysis were combined to assess the expression level of NEAT1 in HCC. The pooled standard mean deviation (SMD) indicated that NEAT1 was up-regulated in HCC (SMD = 0.54; 95% CI, 0.36–0.73; P < 0.0001). The area under the curve value of the summary receiver operating characteristic curve was 0.71. NEAT1 expression was also related to race (P = 0.025) and distant metastasis (P = 0.002). Additionally, the results of GO, KEGG pathway, and PPI network analyses suggest that NEAT1 may promote the progression of HCC by interacting with several tumor-related genes (SP1, MDM4, CREBBP, TRAF5, CASP8, TRAF1, KAT2A, and HIST4H4). Conclusions: NEAT1 contributes to the deterioration of HCC and provides a potential biomarker for the diagnosis and therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document