scholarly journals Clothing size recommender on real-time fitting simulation using skeleton tracking and rigging

2020 ◽  
Vol 8 (2) ◽  
pp. 127-132
Author(s):  
Arik Kurniawati ◽  
Ari Kusumaningsih ◽  
Yanuar Aliffio

Virtual fitting room (VFR) is a technology that replaces conventional fitting rooms. The VFR is not only available in shops, malls, and any shopping center but also in online stores, which makes VFR technology more and more developed, primarily to support online garment sales. VFR become a trending research interest since Microsoft has developed a Kinect tracking system. In this paper, we proposed the interactive 3D virtual fitting room using Microsoft's Kinect tracking and the rigging technique from 3D Modeling Blender and to implement the VFR. VFR manages the progress of virtual fitting that forms the three-dimensional simulations and visualization of garments on virtual counterparts of the real prospective buyer (user). Users can view the clothing animation on the various poses that are following the user body movements. The system can evaluate the user’s match, guiding them to choose the suitable size of the clothes using Euclidean distance.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2670
Author(s):  
Thomas Quirin ◽  
Corentin Féry ◽  
Dorian Vogel ◽  
Céline Vergne ◽  
Mathieu Sarracanie ◽  
...  

This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Olivier Oldrini ◽  
Patrick Armand ◽  
Christophe Duchenne ◽  
Sylvie Perdriel ◽  
Maxime Nibart

Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials.


2011 ◽  
Vol 733 (1) ◽  
pp. 17 ◽  
Author(s):  
Kazunari Iwasaki ◽  
Shu-ichiro Inutsuka ◽  
Toru Tsuribe

Sign in / Sign up

Export Citation Format

Share Document