scholarly journals ANALISA RESIKO PEMBANGUNAN JALAN TOL NUSA DUA-NGURAH RAI-TANJUNG BENOA TERHADAP TSUNAMI

2013 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Edwin Hidayat

The construction of Nusa Dua – Ngurah Rai – Benoa Toll Road in coastal area which has vulnerability of tsunami so for measure the level of vulnerability use the Building TsunamiVulnerability (BTV) from Omira et al (2009), Tsunami Matrix from Sengaji and Nababan (2009),and Coastal Vulnerability Indeks (CVI) by Kumar et al (2010). The result of BTV is 30%, this value included in the class risk D1 which has meaning slight no structural damage. Then with the result showed the value is 4 and include in the class risk 4 which the meaning is high risk. Lastly,measuring with CVI model the result is 16,53 this included in the class risk moderate. We had different results, it is because the parameter and the coefficient value were calculated also different. Furthermore, the parameters tsunami run-up and the type of building materials are parameters which need to be most consider, these parameters are the most dominant factor. It can be concluded that the Nusa Dua - Ngurah Rai - Benoa toll road has vulnerability to Tsunami.Thus, we must preparing the mitigation or adaptation plan, such as, evacuation routes plan, if forece majeur happened.

2020 ◽  
Author(s):  
Büşra Çelikbaş ◽  
Duygu Tufekci Enginar ◽  
Gozde Guney Dogan ◽  
Mehmet Lutfi Suzen ◽  
Cagil Kolat ◽  
...  

<p>Turkey suffered from devastating earthquakes and faced with a considerable number of tsunamis in its past. Although, tsunamis occurred in Turkey are not catastrophic as the ones in Pacific Ocean, they may still cause substantial damage in highly populated and/or touristic coastal areas. On July 21, 2017 at 22.31 UTC, a strong earthquake in the Gulf of Gokova (Mediterranean Sea) with a magnitude (Mw) of 6.6 (KOERI) was recorded. The earthquake caused a tsunami that affected the southern coast of Bodrum, Turkey and the northern parts of Kos island, Greece. The largest tsunami run-up was about 1.9 m and observed at Gumbet Bay, Bodrum (Dogan et al., 2019). Fortunately, there were no causalities as tsunami occurred at night time when there were few people on the coast, despite summer season. However, if the same event had occurred during daytime, its impact to the coastal localities would be much higher and it would cause panic among more people.</p><p>After the 2017 Bodrum-Kos tsunami, numerical simulations based on critical worst-case tsunami scenarios are performed with NAMI DANCE numerical model. According to the simulation results, a seismic scenario based on 1956-Amorgos earthquake and a combined scenario of Gokova fault and North Datca landslide scenario which is a possible submarine landslide assumed to be triggered by the seismic mechanism of Gokova scenario, give the maximum inundation distances and flow depth values at Southern coast of Bodrum Peninsula mainly in Central Bodrum town, Gumbet Bay, Bitez Bay, Yahsi Bay and Akyarlar-Karaincir-Aspat Bays where most of the settlements and touristic facilities are located.</p><p>In this study, evacuation walk time maps are prepared for the coastal settlements at Southern Coastline of Bodrum Peninsula by using Pedestrian Evacuation Analyst Tool (PEAT) developed by Jones et al. (2014) based on the selected critical scenarios above mentioned. PEAT is a least-cost-distance (LCD) evacuation model that estimates evacuation times throughout hazard zone based on elevation, land cover, walking speed and direction of movement (Wood and Schmidtlein, 2012). The required data are gathered from international open source databases and data provided by Bodrum Municipality. The resultant pedestrian evacuation maps show time in minutes for pedestrian who aims to reach safety zone from shortest route. According to the maps, longest walk times to the safety are calculated to be 8 minutes for Central Bodrum, 3 minutes for Gumbet Bay, 4 minutes for Bitez Bay, 6 minutes for Yahsi Bay and 5 minutes for Akyarlar-Karaincir-Aspat Bays. The pedestrian evacuation times are also tested by onsite measurements. The results are compared and presented by discussions. The evacuation maps provide a base for emergency managers, planners and local decision makers during the planning of evacuation routes and preparation of emergency response plans.</p><p>Acknowledgements: This study is partly supported by Turkey Tsunami Last Mile Project Analyses JRC/IPR/2018/E.1/0013/NC with contract number 936314-IPR-2018.</p><p>Keywords: Tsunami evacuation, Least cost distance model, Pedestrian evacuation, Walk time maps</p>


2011 ◽  
Vol 1 (32) ◽  
pp. 26 ◽  
Author(s):  
Torsten Schlurmann ◽  
Widjo Kongko ◽  
Nils Goseberg ◽  
Danny Hilman Natawidjaja ◽  
Kerry Sieh

Near-field tsunami propagation both in shallow water environments and bore-like wave propagation on land are conducted in this study to obtain fundamental knowledge on the tsunami hazard potential in the city of Padang, Western Sumatra, Republic of Indonesia. As the region proves a huge seismic moment deficit which has progressively accumulated since the last recorded major earthquakes in 1797 and 1833, this investigation focuses on most reasonable seismic sources and possibly triggered nearshore tsunamis in order to develop upgraded disaster mitigations programs in this densely-populated urban agglomeration located on the western shore of Sumatra Island. Observations from continuous Global Positioning Satellite (cGPS) systems and supplementary coral growth studies confirm a much greater probability of occurrence that a major earthquake and subsequent tsunami are likely to strike the region in the near future. Newly surveyed and processed sets of geodata have been collected and used to progress most plausible rupture scenarios to approximate the extent and magnitudes of a further earthquake. Based upon this novel understanding, the present analysis applies two hydronumerical codes to simulate most probable tsunami run-up and subsequent inundations in the city of Padang in very fine resolution. Run-up heights and flow-depths are determined stemming from these most plausible rupture scenarios. Evaluation of outcome and performance of both numerical tools regarding impacts of surge flow and bore-like wave fronts encountering the coast and inundating the city are thoroughly carried out. Results are discussed not only for further scientific purposes, i.e. benchmark tests, but also to disseminate main findings to responsible authorities in Padang with the objective to distribute the most probable dataset of plausible tsunami inundations as well as to address valuable insights and knowledge for effective counter measures, i.e. evacuation routes and shelter building. Following evacuation simulations based on rational assumptions and simplifications reveal a most alerting result as about 260.000 people are living in the highly exposed potential tsunami inundation area in the city of Padang of which more than 90.000 people will need more than 30 min. to evacuate to safe areas.


2019 ◽  
Vol 15 (1) ◽  
pp. 1-10
Author(s):  
Andi Syukri

Padang City, as one of the highest vulnerable from earthquake and tsunami, has been transforming to become disaster smart city. However, the inadequacy of horizontal evacuation routes is caused by numerous tremors in 2007, 2009, 2010, and 2016 are indicating it is lack of occupancy for evacuee. Then, these condition is decreasing by traditional behavior evacuee are still using the vehicle and unwell planned evacuation as personally or in the community. The small number of vertical evacuation building and lack of awareness of community, and unmanaged the evacuation facilities make emergency response from earthquake and tsunami is uncontrolled in 0 – 20 minute for 30 minutes remaining time evacuate to inland in personally or community. Padang city has people density in the more than 1,317 people/km2 in the coastal area numerous potential for earthquake and tsunami risk. Pedestrian overpasses as primary facilities in many main roads in Padang City should be utilized for people to cross the road but it does not work properly but in fact, type of material, steel construction, was not durable with the climate in Padang that have coastal climate and a high number of behavior for crossing road in uncertain places. Regarding of the vulnerability in earthquake and tsunami risk, unmanaged construction and bad culture in crossing the road, pedestrian overpasses, especially in the intersection, will be redesigned to be a vertical evacuation. It will have a multifunction structure that is not simply for passing the pedestrian but also comprises remarkable facilities as a meeting point, commercial place and public facilities. Pedestrian overpasses for vertical evacuation from the tsunami will solve lack of area for construct vertical evacuation in the community. It can duplicate easily for any coastal cities that require vertical evacuation structures. Apparently, area availability will determine how vulnerable the site for vertical evacuation will suit for evacuee who living surrounding. Road intersection will be a good site for redesigning vertical evacuation Intersection of the road and have large space will be a good candidate for redesigning pedestrian overpasses as vertical evacuation structure. Road Intersection as vulnerable routes for horizontal evacuation is already happened in several occurrence of earthquake in Padang City. Based on google maps, every road will contribute a number of evacuee and mostly by using vehicle and fewer people who will evacuate by walking. The Study of coverage area intersection pedestrian overpasses as vertical evacuation from tsunami in Padang, West Sumatra will describe about how large the estimated capacity of pedestrian overpasses can be suit for vertical evacuation and how wide the area can be facilitated by this evacuation site. Remaining time of tsunami, walking space, readiness evacuation time, and time to reach upland. Those will be determined into how far the evacuee can reach the site. Based on the population density, it can observed the length of the radius can be serviced the evacuee to evacuation structure. People density will influence how large the coverage area for each site. According to this study, horizontal evacuation from tsunami in Padang city is still vulnerable for the people who living in coastal area. Bottleneck evacuation can be solved by build a vertical evacuation near by the bottleneck zone. Pedestrian overpasses for vertical evacuation is designing to accommodate the evacuee can save their life from the tsunami run up because incapability to reach inland.


Author(s):  
Gentur Handoyo ◽  
Agus A.D. Suryo Putro ◽  
Petrus Subardjo

<p align="center"><strong><em>ABSTRACT</em></strong></p><p><em>The tsunami often hitthe southern coast of Java several times, where Parangtritis located in that area. This is due to the meeting of Indo-Australian plate with the Eurasian plate in the south of Java that results in a major tectonic tsunami source. Tsunami waves from this region takes 50 to 100 minutes to reach the beach. Considering the short span of time to self-rescue</em><em>,</em><em> than its necessary to concieve a map of vulnerability to the tsunami region to plan evacuation routes and </em><em>tsunami temporary </em><em>evacuation place (TES) tsunami incoastal village of Parangtritis. The material used as an object to study in this research is the vulnerability of the tsunami, tsunami runoff based on the runup height, the proposed evacuation routes and </em><em>tsunami temporary </em><em>evacuation place (TES) as. The result</em><em>,</em><em>village </em><em>in </em><em>Parangtritis</em><em> is a</em><em> tsunami prone areas with vast percentage of the tsunami-prone areas at 66.45%. When the </em><em>tsunami run up reach </em><em>16m the affected area </em><em>was </em><em>788.07 Ha. There are three proposed evacuation route through the Parangtritis</em><em> roads</em><em>, Depok roads and Depok-Parangtriti</em><em>s road</em><em>s. There are 12 proposed temporary evacuation place which spread in the village Parangtritis. </em><em></em></p><p><strong>Keywords</strong>:<em> </em><em>Inundation</em><em>, Plate, Runup</em><em></em></p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


Author(s):  
Renata Archetti ◽  
Maria Gabriella Gaeta ◽  
Fabio Addona ◽  
Leonardo Damiani ◽  
Alessandra Saponieri ◽  
...  

The use of video-monitoring techniques is significantly increased due to the diffusion of high-resolution cameras at relatively low-costs and they are largely used to estimate the shoreline evolution and wave run-up, as important coastal state indicators to be monitored and predicted for the assessment of flooding and erosion risks. In this work, we present an integrated approach based on the results from the low-cost video monitoring systems and the numerical modeling chain by means of SWAN and XBeach to accurately simulate and predict the swash zone processes.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/nLGNneJzmIU


Author(s):  
Kaori Nagai ◽  
Taro Arikawa ◽  
Kwanchai Pakoksung ◽  
Fumihiko Imamura ◽  
Masashi Watanabe ◽  
...  

On 22 December 2018, a volcanic eruption occurred at Anak Krakatau, Sunda Strait, Indonesia, which induced a tsunami. At the coastal area in the Sunda Strait, the destructive tsunami destroyed many structures and killed more than 400 people approximately 30 to 40 min after the eruption. In this event, it has been reported that many residents start to evacuate after seeing tsunami because alert of tsunami was not occurred. It is difficult to escape from a tsunami after seeing it waves, so early evacuation become important. Previously, many studies which handle Krakatau volcanic eruption induced tsunamis have been conducted. Pakoksung et al. (2019) conducted its simulation, but it was reported that the observed run-up heights and inundation depths were underestimated. Moreover, there were few studies which handle evacuation from non- seismic tsunami. The purpose of the study is to reveal the actual evacuation action from the tsunami induced by the 2018 volcanic eruption.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ELOif7G4eNo


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Waluyo Waluyo ◽  
Amelia Fitrina Devi ◽  
Taslim Arifin

Coastal vulnerability is a condition of a coastal community or society that leads to or causes an inability to face the threat of danger. The level of vulnerability can be viewed from the physical (infrastructure), social, demographic, and economic vulnerabilities. Physical vulnerability (infrastructure) describes a physical condition (infrastructure) that is prone to certain hazard factors. The coastal vulnerability areas can also be interpreted as a condition where there is an increase in the process of damage in the coastal area which is caused by various factors such as human activities and factors from the nature. This research aims to determine the level of coastal vulnerability in Indramayu coastal Regency with a Coastal Vulnerability Assessment (CVA) analysis approach and a Geographic Information System (GIS). Mapping the status of the vulnerability level of the Indramayu coastal area using the CVA method where the index range generated from the calculation of the four physical parameters mentioned above is between 2.887 – 3.651 or are in moderate vulnerability. A higher vulnerability value is found in several locations such as Juntikedokan and Benda villages. It is necessary to develop coastal protection in this area to prevent damage to the coastal area.


Sign in / Sign up

Export Citation Format

Share Document