scholarly journals Seed quality, water use efficiency and eco physiological characteristics of Lallemantia (Lallemantia sp.) species as effected by soil moisture content

2019 ◽  
Vol 113 (2) ◽  
pp. 307
Author(s):  
Mina ABDOLAHI ◽  
Saeideh MALEKI FARAHANI

<p>This study investigated the effect of drought stress on the yield, water use efficiency (WUE), physiology, and seed quality of two species Lallemantia sp. Field experiments with three irrigation regimes were carried out in a split plot factorial in a randomized complete block design with three replications. Treatments included irrigation after 40 %, 60 %, and 100 % depletion of available soil water (ASW) (I40, I60, and I100, respectively) as main plots and Lallemantia species L. iberica (M. Bieb.) Fisch. &amp; C. A. Mey. (S1) and L. royleana Benth. in Wall (S2) as subplots. Increment in depletion of ASW (I40 to I100) resulted in progressively less chlorophyll a content (Chl­ a), open stomata percentage (OS), and leaf area index (LAI). The highest Chl­ a and LAI were found to be 0.0087­ mg g−1, and 2.68 mg g−1 leaf mass in I40 treatment, respectively, while closed stomata percentage (CS) increased significantly as drought stress increased. The results of this experiment indicated that the appropriate yield of production was obtained in plots which were fully irrigated (I40) for all species of Lallemantia; however, the WUE increased as drought stress increased. The interaction of drought stress, Lallemantia species with grain yield and WUE was significant.</p>

2013 ◽  
Vol 126 ◽  
pp. 193-202 ◽  
Author(s):  
Majid Gholamhoseini ◽  
Amir Ghalavand ◽  
Aydin Khodaei-Joghan ◽  
Aria Dolatabadian ◽  
Hamed Zakikhani ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 72
Author(s):  
S. Lamptey ◽  
Lingling Li ◽  
Junhong Xie

Water is one of the most important limiting factor of rainfed continuous maize (Zea mays L.) cropping systems in northwest of China. A three continuous year field experiments were conducted to study the influence of different nitrogen time of application on grain yield and water use efficiency of maize (Zea mays L.) in the Western Loess plateau. The experiment was laid in a randomized complete block design with two treatments and three replicates. Treatments were; (one-third application of N at sowing + two-third application at pre-flowering) and (one-third application of N at sowing + one-third pre-flowering + one-third at milking) as T1 and T2 respectively. The results showed that, T1 significantly increased grain yield by 9% in 2014 and 2016; and WUE by 11% in 2016 compared to T2. T1 increased AE by 43% compared to T2. Our results indicate that ⅓ application of Nitrogen at sowing and ⅔ application of Nitrogen at pre–flowering (T1) for maize is more appropriate for sustainable maize production in terms of satisfactory grain-N recoveries and low environmental losses of N fertilizer.


2020 ◽  
Vol 9 (12) ◽  
pp. e3291210670
Author(s):  
Danielle Paula de Oliveira Mangarotti ◽  
Roberto Rezende ◽  
Reni Saath ◽  
Tiago Luan Hachmann ◽  
Paula Toshimi Matumoto-Pintro ◽  
...  

Environmental stress can directly or indirectly affect the formation of reactive oxygen species. Oxidative stress damages cell constituents such as carbohydrates, lipids, nucleic acids and proteins, reducing plant growth, respiration and photosynthesis. In recent decades, evidence has shown that small doses of selenium act as an antioxidant and plant biostimulant, promoting growth and improving resistance to abiotic stress such as drought. As such, the aim of this study was to assess the effect of selenium foliar feeding (0, 150 and 300 ppm) on the antioxidant activity, water use efficiency and yield traits of arugula grown with and without drought stress (50% and 100% ETc) in a protected environment. A randomized block design was used, with a 2x3 factorial scheme and four repetitions. Antioxidant activity increased in treatments with 150 ppm of fertilizer and exposure to drought stress. Plants in these treatments obtained higher water use efficiency, yield and leaf area values than those not submitted to drought stress.


1992 ◽  
Vol 43 (3) ◽  
pp. 529 ◽  
Author(s):  
RA Richards

Near-isogenic lines of wheat for the dwarfing genes Rht1, Rht2, Rht3 and Rht1+Rht2 as well as tall (rht) lines were grown in dryland field environments over 7 years as well as in large pots outside and in a glasshouse. In the field above-ground dry weight and leaf area index up to maturity were greater in the taller wheats. In pot experiments there were no differences in relative growth rates between lines and the faster emergence of the tall wheats accounted for most of the difference in dry weight accumulation and leaf canopy development. Tall wheats also had a slightly higher carbon isotope discrimination which has been related to faster canopy growth in wheat. Water extraction by tall and dwarf wheats was similar in both 1 m long tubes and down to a depth of 1.9 m in the field. However, transpiration efficiency (above-ground dry weight/water transpired) and water-use efficiency (above-ground dry weight/evapotranspiration) declined with plant height in both glasshouse and field experiments. There was no evidence that tall wheats had a greater capacity for storage and remobilization of photosynthate in the stems than shorter wheats. The implications for crop improvement in dry regions are discussed.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 289 ◽  
Author(s):  
Qiang Xu ◽  
Xiaopeng Ma ◽  
Tingbo Lv ◽  
Meng Bai ◽  
Zelin Wang ◽  
...  

To study the effects of water stress on the fluorescence parameters and photosynthetic characteristics of rice under drip irrigation and mulching, so as to determine the response mechanisms to water stress during the tillering stage. A two-year trial was carried out at Shihezi University, China. Three water gradients were investigated. The results showed that the chlorophyll content (a + b), photosynthetic rate (Pn), and leaf area index (LAI) decreased with decreasing soil moisture content at the tillering stage. The chlorophyll content (a + b) and Pn in the flooding irrigation (CK) treatment were significantly higher than those in the stress treatments, and the chlorophyll content (a + b) and Pn in the W1 and W2 treatments were significantly lower than those in the other treatments. The maximum LAI of the CK, W1, and W2 treatments were similar, while the W3 produced lower values; stress treatment improved the ability of tillering in the early and middle stages, while the decrease in soil water content in the tillering stage resulted in a decrease in the final tillering rate; drought stress in the tillering stage resulted in decreased rice yields. The yield of the W1 and W2 treatments were similar, while that of the W3 treatment was seriously reduced. The main reasons for the reduction in yield was the significant decrease in the number of effective panicles, the seed setting rate, and a decrease in the 1000-grains weight. Water consumption in the stress treatments decreased by 51.69%–58.78% compared to the CK treatment; water-use efficiency in the CK treatment was only 0.25 kg·m−3, and the water-use efficiency of the stress treatments increased by 40%–72%. We should make full use of the compensation effect of drought stress in the water regulation of drip irrigation in covered rice and adopt the water control measure of the W2 treatment in the tillering stage. These measures are conducive to improving water-use efficiency and achieving the goal of high quality, high yield, and high efficiency.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


Sign in / Sign up

Export Citation Format

Share Document