Evaluation of the groundwater and stream water interaction using metagenomics analysis in the hyporheic zone, Inje of Gangwon Province

2018 ◽  
Vol 54 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Woo-Hyun Jeon ◽  
Shinae Park ◽  
Jin-Yong Lee ◽  
Jung-Shin Lee ◽  
Yong-Joon Cho
2006 ◽  
Vol 63 (1) ◽  
pp. 120-133 ◽  
Author(s):  
Tamao Kasahara ◽  
Alan R Hill

Stream restoration projects that aim to rehabilitate ecosystem health have not considered surface–subsurface linkages, although stream water and groundwater interaction has an important role in sustaining stream ecosystem functions. The present study examined the effect of constructed riffles and a step on hyporheic exchange flow and chemistry in restored reaches of several N-rich agricultural and urban streams in southern Ontario. Hydrometric data collected from a network of piezometers and conservative tracer releases indicated that the constructed riffles and steps were effective in inducing hyporheic exchange. However, despite the use of cobbles and boulders in the riffle construction, high stream dissolved oxygen (DO) concentrations were depleted rapidly with depth into the hyporheic zones. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that these hyporheic zones were also nitrate sinks. Zones of low hydraulic conductivity and the occurrence of interstitial fines in the restored cobble-boulder layers suggest that siltation and clogging of the streambed may reduce the downwelling of oxygen- and nitrate-rich stream water. Increases in streambed DO levels and enhancement of habitat for hyporheic fauna that result from riffle–step construction projects may only be temporary in streams that receive increased sediment and nutrient inputs from urban areas and croplands.


2021 ◽  
Author(s):  
Heide Stein ◽  
Hans Jürgen Hahn

<p>In this study, the temporal variability of the hydrological exchange between stream water (SW) and groundwater (GW), colmation, hyporheic invertebrate fauna, organic matter (OM) and physicochemical parameters were examined for the period of one year. Sampling and measuring were conducted monthly from May 2019 to April 2020 at the Guldenbach river, a second order stream in Rhineland-Palatinate, Germany. All hyporheic samples were extracted from a depth of 15 cm below stream bottom. Colmation was measured quantitatively in the same depth.</p><p>Following the biotic and abiotic patterns found, three temporal stages of different hydrological conditions can be described:</p><ul><li>1) Strong floods, in February and March 2020 caused hydromorphological alterations of the river bed, leading to a decolmation of the hyporheic zone, a wash out of OM and hyporheic fauna. Due to high GW tables the vertical hydrological gradient (VHG) was positive indicating upwelling GW.</li> <li>2) In the months of Mai to August 2019 and April 2020, precipitation and stream discharge were lowest. Predominantly exfiltrating conditions were observed, while the amount of fine sediments (clay and silt) increased as well as colmation. High densities of hyporheic fauna, dominated by fine sediment dwelling taxa, were assessed.</li> <li>3) From September 2019 to January 2020 stream discharge was low. The VHG became increasingly negative, indicating downwelling SW. In accordance, colmation increased continuously, while densities of hyporheic invertebrates decreased and sediment dwellers became more dominant.</li> </ul><p>Precipitation, discharge events and GW table were found to be the driving factors for the annual dynamics of the hydrological exchange as well as for colmation, fauna and hydrochemistry. Electric conductivity seems a suitable indicator for the origin of water with high values in months of low precipitation and lower values after extensive precipitation events, respectively. Hyporheic fauna displayed a significant seasonality and the community structure was correlated with colmation and changes in the VHG.</p><p>This pronounced seasonality seems to be typical of many streams and should be considered for the monitoring of sediments and hyporheic habitats: Seasons with lower stream discharge are probably the most critical periods for sediment conditions.</p><p>We assume that the basic patterns of the dynamics observed basically reflect the natural situation in the catchment. However, the strength of surface run-off and the amount of fine sediments are mainly the result of anthropogenic activities and land use in the catchment.</p><p>These findings underline the significance of dynamical processes for the assessment and implementation of the Water Framework Directive.</p>


Author(s):  
Michael Gooseff

Stream sediments are important locations of biogeochemical transformations upon which many stream ecosystem functions depend. Stream water is often exchanged between the stream channel and surrounding subsurface locations - this process is known as hyporheic exchange. While stream water is moving through the hyporheic zone, solutes and nutrients may undergo important chemical reactions that are not possible in the main stream channel. Further, because the hyporheic zone is composed of porous media (sand, sediment, alluvium, etc.), flow inherently slows down and the exchanging water has ample opportunity to interact with mineral grain surfaces and biofilms.


2002 ◽  
Vol 6 (3) ◽  
pp. 515-526 ◽  
Author(s):  
A. Butturini ◽  
S. Bernal ◽  
S. Sabater ◽  
F. Sabater

Abstract. Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p<0.001). The variability of precipitation v. stream runoff is explained partly by the hydrogeological properties of the riparian near-stream zone. This zone is characterised by high hydrological conductivity values and abrupt changes in groundwater level in summer. The summer dry period begins with a rapid decrease in near-stream groundwater level, and ends just after the first autumnal rain when the original groundwater level recovers suddenly. Within this period, storms do not cause major stream runoff since water infiltrates rapidly into the riparian compartment until it is refilled during the subsequent winter and spring; then the precipitation explains the 80% of the stream runoff variability (r2=0.80, d.f.=34, p<0.001). These results suggest that the hydrological interaction between the riparian groundwater compartment and the stream channel is important in elucidating the hydrological responses during drought periods in small Mediterranean streams. Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1792 ◽  
Author(s):  
Marek Nawalany ◽  
Grzegorz Sinicyn ◽  
Maria Grodzka-Łukaszewska ◽  
Dorota Mirosław-Świątek

Modelling of water flow in the hyporheic zone and calculations of water exchange between groundwater and surface waters are important issues in modern environmental research. The article presents the Analytical Hyporheic Flux approach (AHF) permitting calculation of the amount of water exchange in the hyporheic zone, including vertical water seepage through the streambed and horizontal seepage through river banks. The outcome of the model, namely water fluxes, is compared with the corresponding results from the numerical model SEEP2D and simple Darcy-type model. The errors of the AHF model, in a range of 11–16%, depend on the aspect ratio of water depth to river width, and the direction of the river–aquifer water exchange, i.e., drainage or infiltration. The AHF model errors are significantly lower compared to the often-used model based on vertical water seepage through the streambed described by Darcy’s law.


2002 ◽  
Vol 6 (3) ◽  
pp. 539-550 ◽  
Author(s):  
A. Butturini ◽  
F. Sabater

Abstract. The importance of storm frequency as well as the groundwater and hyporheic inputs on nitrate (NO3-N) and ammonium (NH4-N) levels in stream water were studied in a small perennial Mediterranean catchment, Riera Major, in northeast Spain. NO3-N concentrations ranged from 0.15 to 1.9 mg l-1. Discharge explained 47% of the annual NO3-N concentration variance, but this percentage increased to 97% when single floods were analysed. The rate of change in nitrate concentration with respect to flow, ΔNO3-N/ΔQ, ranged widely from 0 to 20 μg NO3-N s l-2. The ΔNO3-N/ΔQ values fitted to a non linear model with respect to the storm flow magnitude (ΔQ) (r2=0.48, d.f.=22, P<0.01). High values of ΔNO3-N/ΔQ occurred at intermediate ΔQ values, whereas low ΔNO3-N/ΔQ values occurred during severe storms (ΔQ > 400 l s-1). N3-N concentrations exhibit anticlockwise hysteresis patterns with changing flow and the patterns observed for autumnal and winter storms indicated that groundwater was the main N3-N source for stream and hyporheic water. At baseflow, NO3-N concentration in groundwater was higher (t=4.75, d.f.=29, P>0.001) and co-varied with concentrations in the stream (r=0.91, d.f.=28, P<0.001). In contrast, NO3-N concentration in hyporheic water was identical to that in stream water. The role of the hyporheic zone as source or sink for ammonium was studied hyporheic was studied comparing its concentrations in stream and hyporheic zone before and after a major storm occurred in October 1994 that removed particulate organic matter stored in sediments. Results showed high ammonium concentrations (75±28 s.d. μg NH4-N l-1) before the storm flow in the hyporheic zone. After the storm, the ammonium concentration in the hyporheic dropped by 80% (13.6±8 μg N4-N l-1) and approached to the level found in stream water (11±8 μg NH4-N l-1) indicating that indisturbed hyporheic sediments act as a source for ammonium. After the storm, the ammonium concentrations in the stream, hyporheic and groundwater zones were very similar suggesting that stream ammonium concentrations are sustained mainly by input from groundwater. The present study provides evidence that storm flow magnitude is an important source of variability of nitrate concentration and fluxes in Mediterranean streams subjected to an irregular precipitation regime with prolonged dry periods.


1993 ◽  
Vol 44 (4) ◽  
pp. 553 ◽  
Author(s):  
AJ Boulton

In many streams with coarse substrata, there is continuous exchange between surface water and interstitial (hyporheic) water. Upwelling hyporheic water usually contains less dissolved oxygen and may provide nutrients that are limiting in the surface water. Downwelling stream water carries oxygen, surface detritus and other material to the hyporheic zone where microbes and invertebrates reside. The magnitude and direction of this hydrologic exchange can be measured using relatively simple techniques (such as dye injections and mini-piezometers) although there are some important limitations to consider. As hydrologic exchange has been shown to affect the distribution of benthic algae and invertebrates in some streams, this variable has implications for a variety of lotic studies including those of drift, leaf breakdown, benthic invertebrate colonization, sedimentation, and nutrient limitation. Experiments in flumes and artificial stream channels usually remove the influence of hydrologic exchange although it would be possible to incorporate this into their design. Stream ecologists should consider assessing the significance of the hyporheic zone to surface processes by quantifying the vectors of hydrologic exchange to ascertain how these may affect results of work conducted on the benthos at a variety of scales.


2016 ◽  
Author(s):  
Elsa Dorothea Saelens ◽  
◽  
W.B. Lyons ◽  
Kathleen A. Welch
Keyword(s):  

2017 ◽  
Vol 23 (4) ◽  
pp. 243-273
Author(s):  
Charles A. Cravotta ◽  
Laura Sherrod ◽  
Daniel G. Galeone ◽  
Wayne G. Lehman ◽  
Terry E. Ackman ◽  
...  

Abstract Longitudinal discharge and water-quality campaigns (seepage runs) were combined with surface geophysical surveys, hyporheic zone temperature profiling, and watershed-scale hydrological monitoring to evaluate the locations, magnitude, and impact of stream-water losses from the West Creek sub-basin of the West West Branch Schuylkill River into the underground Oak Hill Mine complex that extends beneath the watershed divide. Abandoned mine drainage, containing iron and other contaminants, from the Oak Hill Boreholes to the West Branch Schuylkill River was sustained during low-flow conditions and correlated to streamflow lost through the West Creek streambed. During high-flow conditions, streamflow was transmitted throughout West Creek; however, during low-flow conditions, all streamflow from the perennial headwaters was lost within the 300 to 600 m “upper reach,” where an 1889 mine map indicated steeply dipping coalbeds underlie the channel. During low-flow conditions, the channel within the “intermediate reach,” 700 to 1,650 m downstream, gained groundwater seepage with higher pH and specific conductance than upstream; however, all streamflow 1,650 to 2,050 m downstream was lost to underlying mines. Electrical resistivity and electromagnetic conductivity surveys indicated conductive zones beneath the upper reach, where flow loss occurred, and through the intermediate reach, where gains and losses occurred. Temperature probes at 0.06 to 0.10 m depth within the hyporheic zone of the intermediate reach indicated potential downward fluxes as high as 2.1 × 10−5 m/s. Cumulative streamflow lost from West Creek during seepage runs averaged 53.4 L/s, which equates to 19.3 percent of the daily average discharge of abandoned mine drainage from the Oak Hill Boreholes and a downward flux of 1.70×10−5 m/s across the 2.1 km by 1.5 m West Creek stream-channel area.


Sign in / Sign up

Export Citation Format

Share Document