Synaptic plasticity supports slow gamma phase-locking in CA1 place cells during environmental novelty

2017 ◽  
Vol 29 (3) ◽  
pp. 643-678
Author(s):  
Thomas Burwick ◽  
Alexandros Bouras

The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked (“coherent”) manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler’s perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Miwako Yamasaki ◽  
Tomonori Takeuchi

Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.


2020 ◽  
Author(s):  
Aaron D. Milstein ◽  
Yiding Li ◽  
Katie C. Bittner ◽  
Christine Grienberger ◽  
Ivan Soltesz ◽  
...  

AbstractAccording to standard models of synaptic plasticity, correlated activity between connected neurons drives changes in synaptic strengths to store associative memories. Here we tested this hypothesis in vivo by manipulating the activity of hippocampal place cells and measuring the resulting changes in spatial selectivity. We found that the spatial tuning of place cells was rapidly reshaped via bidirectional synaptic plasticity. To account for the magnitude and direction of plasticity, we evaluated two models – a standard model that depended on synchronous pre- and post-synaptic activity, and an alternative model that depended instead on whether active synaptic inputs had previously been potentiated. While both models accounted equally well for the data, they predicted opposite outcomes of a perturbation experiment, which ruled out the standard correlation-dependent model. Finally, network modeling suggested that this form of bidirectional synaptic plasticity enables population activity, rather than pairwise neuronal correlations, to drive plasticity in response to changes in the environment.


2016 ◽  
Author(s):  
Robson Scheffer-Teixeira ◽  
Adriano BL Tort

AbstractPhase-amplitude coupling between theta and multiple gamma sub-bands hallmarks hippocampal activity and is believed to take part in information routing. More recently, theta and gamma oscillations were also reported to exhibit reliable phase-phase coupling, or n:m phase-locking. The existence of n:m phase-locking suggests an important mechanism of neuronal coding that has long received theoretical support. However, here we show that n:m phase-locking (1) is much lower than previously reported, (2) highly depends on epoch length, (3) does not statistically differ from chance (when employing proper surrogate methods), and that (4) filtered white noise has similar n:m scores as actual data. Moreover, (5) the diagonal stripes in theta-gamma phase-phase histograms of actual data can be explained by theta harmonics. These results point to lack of theta-gamma phase-phase coupling in the hippocampus, and suggest that studies investigating n:m phase-locking should rely on appropriate statistical controls, otherwise they could easily fall into analysis pitfalls.


2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Inga Griskova-Bulanova ◽  
Aleksandras Voicikas ◽  
Kastytis Dapsys ◽  
Sigita Melynyte ◽  
Sergejus Andruskevicius ◽  
...  

The 40 Hz auditory steady-state response (ASSR) impairment is suggested as an electrophysiological biomarker of schizophrenia; however, existing data also points to the deficiency of low and high frequency ASSR responses. In order to obtain the full picture of potential impairment in schizophrenia, it is important to test responses at different frequencies. The current study aims to evaluate a wide frequency range (1–120 Hz) in response to brief low-frequency carrier chirp-modulated tones in a group of patients with schizophrenia. The EEG-derived envelope following responses (EFRs) were obtained in a group of male patients with schizophrenia (N = 18) and matched controls (N = 18). While subjects were watching silent movies, 440 Hz carrier chirp-modulated at 1–120 Hz tones were presented. Phase-locking index and evoked amplitude in response to stimulation were assessed and compared on point-to-point basis. The peak frequency of the low gamma response was estimated. Measures were correlated with psychopathology—positive, negative, total scores of the Positive and Negative Syndrome Scale (PANSS), and hallucination subscale scores. In comparison to controls, patients showed (1) reduced power of theta-beta (4–18 Hz) responses, (2) intact but slower low gamma (30–60 Hz), and (3) reduced high gamma (95–120 Hz) responses. No correlation survived the Bonferroni correction, but a sign of positive association between low gamma phase-locking and the prevalence of hallucinations, and a sign of negative association between high gamma phase-locking and the total PANSS scores were observed. Brain networks showed impaired capabilities to generate EFRs at different frequencies in schizophrenia; moreover, even when responses of patients did not significantly differ from controls on the group level, they still showed potentially clinically relevant variability.


2017 ◽  
Author(s):  
Mauro M Monsalve-Mercado ◽  
Christian Leibold

Space is represented in the mammalian brain by the activity of hippocampal place cells as well as in their spike-timing correlations. Here we propose a theory how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.


Sign in / Sign up

Export Citation Format

Share Document