Durability of a Drag Reducing Solution

2008 ◽  
Vol 18 (1) ◽  
pp. 12421-1-12421-5
Author(s):  
V. Mik ◽  
J. Myska ◽  
Z. Chara ◽  
P. Stern

AbstractEffectiveness of drag reduction by small addition of a surfactant in the turbulent flow of water depends on the structure and concentration of the additive, temperature of the solution and turbulence intensity, possible flow disturbance by a mechanical obstacle and the content of ions in water, but also on the age of the surfactant solution. We show how important aging effects are in connection with total surfactant concentration, in particular how rheological parameters of the drag reducing solution change with time.

Author(s):  
Y. Kagawa ◽  
B. Yu ◽  
Y. Kawaguchi

For the purpose of elucidating the mechanism of drag reduction by additives and finding a way to judge optimum drag-reducing additives through a simple rheological test, we performed DNS analysis of viscoelastic fluid turbulent flow in a two-dimensional channel. In this calculation, we employed the Giesekus constitutive equation to model the interaction between water-soluble polymer, or the elastic micellar network structure, and solvent. We calculated the fluid flow by varying the rheological parameters of the model. We examined the turbulent kinetic energy budget and studied the “viscoelastic contribution” term in the budget equation for turbulent intensity, which is not apparent in normal Newtonian fluid turbulence. Viscoelastic contribution has a characteristic effect on viscoelastic fluid turbulence. We concluded that the viscoelastic contribution plays a major role in turbulent frictional drag reduction. Dissipation and viscoelastic contribution serve as a key factor of turbulent kinetic energy loss in most areas of the channel. From the visualization of local and instantaneous eddy behavior, we discussed the relationship between viscoelastic contribution, elastic energy and turbulent production. We found that viscoelastic contribution serves as a direct local source of turbulent production, and that energy is stored in the elasticity.


Author(s):  
Mizue Munekata ◽  
Kazuyoshi Matsuzaki ◽  
Hideki Ohba

A surfactant is well known as an additive that brings about drag-reduction in straight (non-swirling) pipe flow. However in industrial applications of the drag-reducing effect, many flow fields exist including the straight pipe flow. The purpose of this study is to investigate the flow characteristics of surfactant solution swirling pipe flow. The drag reducing effect is estimated from the measurement wall pressure loss and the velocity profiles on various pipe sections are measured by 2 dimensional LDV. Since the surfactant solution has viscoelasticity, interesting flow characteristics are shown. The decay of swirl, the vortex type and the turbulence intensity are discussed, compared with the water swirling flow. The oscillating of vortex core is also investigated.


1994 ◽  
Vol 31 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Shen-Min Liang ◽  
Jan-Kuang Fu

2003 ◽  
Vol 474 ◽  
pp. 275-298 ◽  
Author(s):  
P. D. HOWELL ◽  
C. J. W. BREWARD

The overflowing cylinder (OFC) is an experimental apparatus designed to generate a controlled straining flow at a free surface, whose dynamic properties may then be investigated. Surfactant solution is pumped up slowly through a vertical cylinder. On reaching the top, the liquid forms a flat free surface which expands radially before over flowing down the side of the cylinder. The velocity, surface tension and surfactant concentration on the expanding free surface are measured using a variety of non-invasive techniques.A mathematical model for the OFC has been previously derived by Breward et al. (2001) and shown to give satisfactory agreement with experimental results. However, a puzzling indeterminacy in the model renders it unable to predict one scalar parameter (e.g. the surfactant concentration at the centre of the cylinder), which must be therefore be taken from the experiments.In this paper we analyse the OFC model asymptotically and numerically. We show that solutions typically develop one of two possible singularities. In the first, the surface concentration of surfactant reaches zero a finite distance from the cylinder axis, while the surface velocity tends to infinity there. In the second, the surfactant concentration is exponentially large and a stagnation point forms just inside the rim of the cylinder. We propose a criterion for selecting the free parameter, based on the elimination of both singularities, and show that it leads to good agreement with experimental results.


2021 ◽  
Vol 933 ◽  
Author(s):  
Kengo Fukushima ◽  
Haruki Kishi ◽  
Hiroshi Suzuki ◽  
Ruri Hidema

An experimental study is performed to investigate the effects of the extensional rheological properties of drag-reducing wormlike micellar solutions on the vortex deformation and turbulence statistics in two-dimensional (2-D) turbulent flow. A self-standing 2-D turbulent flow was used as the experimental set-up, and the flow was observed through interference pattern monitoring and particle image velocimetry. Vortex shedding and turbulence statistics in the flow were affected by the formation of wormlike micelles and were enhanced by increasing the molar ratio of the counter-ion supplier to the surfactant, ξ, or by applying extensional stresses to the solution. In the 2-D turbulent flow, extensional and shear rates were applied to the fluids around a comb of equally spaced cylinders. This induced the formation of a structure made of wormlike micelles just behind the cylinder. The flow-induced structure influenced the velocity fields around the comb and the turbulence statistics. A characteristic increase in turbulent energy was observed, which decreased slowly downstream. The results implied that the characteristic modification of the 2-D turbulent flow of the drag-reducing surfactant solution was affected by the formation and slow relaxation of the flow-induced structure. The relaxation process of the flow-induced structure made of wormlike micelles was very different from that of the polymers.


2001 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe

Abstract The flow around a circular cylinder in surfactant solution was investigated experimentally by measurement of the pressure and velocity profiles in the Reynolds number range 6000 < Re < 50000. The test surfactant solutions were aqueous solutions of Ethoquad O/12 (Lion Co.) at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the pressure coefficient of surfactant solutions in the range of 10000 < Re < 50000 at the behind of the separation point was larger than that of tap water, and the separation angle increased with concentration of the surfactant solution. The velocity defect in surfactant solutions behind a circular cylinder was smaller than those in tap water. The drag coefficients of a circular cylinder in surfactant solutions were smaller than those of tap water in the range 10000 < Re < 50000, and no drag reduction occurred at Re = 6000. The drag reduction ratio increased with increasing concentration of surfactant solution. The maximum drag reduction ratio was approximately 35%.


2014 ◽  
Vol 747 ◽  
pp. 186-217 ◽  
Author(s):  
S. Türk ◽  
G. Daschiel ◽  
A. Stroh ◽  
Y. Hasegawa ◽  
B. Frohnapfel

AbstractWe investigate the effects of superhydrophobic surfaces (SHS) carrying streamwise grooves on the flow dynamics and the resultant drag reduction in a fully developed turbulent channel flow. The SHS is modelled as a flat boundary with alternating no-slip and free-slip conditions, and a series of direct numerical simulations is performed with systematically changing the spanwise periodicity of the streamwise grooves. In all computations, a constant pressure gradient condition is employed, so that the drag reduction effect is manifested by an increase of the bulk mean velocity. To capture the flow properties that are induced by the non-homogeneous boundary conditions the instantaneous turbulent flow is decomposed into the spatial-mean, coherent and random components. It is observed that the alternating no-slip and free-slip boundary conditions lead to the generation of Prandtl’s second kind of secondary flow characterized by coherent streamwise vortices. A mathematical relationship between the bulk mean velocity and different dynamical contributions, i.e. the effective slip length and additional turbulent losses over slip surfaces, reveals that the increase of the bulk mean velocity is mainly governed by the effective slip length. For a small spanwise periodicity of the streamwise grooves, the effective slip length in a turbulent flow agrees well with the analytical solution for laminar flows. Once the spanwise width of the free-slip area becomes larger than approximately 20 wall units, however, the effective slip length is significantly reduced from the laminar value due to the mixing caused by the underlying turbulence and secondary flow. Based on these results, we develop a simple model that allows estimating the gain due to a SHS in turbulent flows at practically high Reynolds numbers.


2019 ◽  
Vol 9 (17) ◽  
pp. 3595 ◽  
Author(s):  
Jianfeng Yao ◽  
Wenjuan Lou ◽  
Guohui Shen ◽  
Yong Guo ◽  
Yuelong Xing

To study the influence of turbulence on the wind pressure and aerodynamic behavior of smooth circular cylinders, wind tunnel tests of a circular cylinder based on wind pressure testing were conducted for different wind speeds and turbulent flows. The tests obtained the characteristic parameters of mean wind pressure coefficient distribution, drag coefficient, lift coefficient and correlation of wind pressure for different turbulence intensities and of Reynolds numbers. These results were also compared with those obtained by previous researchers. The results show that the minimum drag coefficient in the turbulent flow is basically constant at approximate 0.4 and is not affected by the turbulence intensity. When the Reynolds number is in the critical regime, the lift coefficient increased sharply to 0.76 in the smooth flow, indicating that flow separation has an asymmetry; however, the asymmetry does not appear in the turbulent flow. Drag coefficient decreases sharply at a lower critical Reynolds number in the turbulent flow than in the smooth flow. In the smooth flow, the separation point is about 80° in the subcritical regime; it suddenly moves backwards in the critical regime and remains almost unchanged at about 140° in the supercritical regime. However, the angular position of the separation point will always be about 140° for turbulent flow for the Reynolds number in these three regimes. Turbulence intensity and Reynolds number have a significant effect on the correlation of wind pressures around the circular cylinder. Turbulence will weaken the positive correlation of the same side and also reduce the negative correlation between the two sides of the circular cylinder.


Sign in / Sign up

Export Citation Format

Share Document