scholarly journals Shield Effect Of Functional Interlining Fabric

2015 ◽  
Vol 15 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Bosiljka Šaravanja ◽  
Krešimir Malarić ◽  
Tanja Pušić ◽  
Darko Ujević

AbstractElectromagnetic interference (EMI) have become very serious in a variety of different electronic equipments, such as personal computers (frequency at several GHz), mobile devices (0.9 – 2.4 GHz) and similar. This imposes the need for setting boundaries for EM emission of electric and electronic devices in order to minimize the possibility of interference with radio and wireless communications. Functional textiles can offer protective properties against EM radiation. The aim of this study is to investigate the degree of protection against EM radiation provided by polyamide copper-coated interlining fabric before and after dry cleaning treatment. EM protection efficiency of the interlining functional fabric is explored on both sides at the frequencies of 0.9; 1.8; 2.1 and 2.4 GHz. The results obtained have shown that the interlining fabric has good protective properties against EM radiation, but after dry cleaning, treatment reduction is observed. Scanning electron microscopy micrographs of the interlining surface confirms shield effect decline due to degradation and firing of the copper layers during the process of dry cleaning.

2013 ◽  
Vol 20 (4) ◽  
pp. 677-688 ◽  
Author(s):  
Stanisław Galla ◽  
Alicja Konczakowska

Abstract Testing of varistors using thermography was carried out in order to assess their protective properties against possible overvoltage phenomena in the form of high-level voltage surges. An advantage of the thermography technique is non-contact temperature measurement. It was proposed to assess the properties of varistors working in electronic devices as protective elements, on the basis of estimating temperature increments on varistor surfaces, registered by an infrared camera during surge resistance tests with standard voltage levels. To determine acceptable temperature increments on a tested varistor, preliminary testing was performed of P22Z1 (Littelfuse) and S07K14 (EPCOS) type varistors, working first at a constant load and presently during surge tests,. The thermographic test results were compared with measured varistor capacity values before and after tests. It was found that recording with thermography temperature increments greater than 6°C for both P22Z1 and S07K14 varistor types detects total or partial loss of varistor protective properties. The test results were confirmed by assessment of protective properties of varistors working in output circuits of low nominal voltage devices.


2021 ◽  
pp. 152808372110370
Author(s):  
Faiza Safdar ◽  
Munir Ashraf ◽  
Amjed Javid ◽  
Kashif Iqbal

The rapid proliferation of electronic devices and their operation at high frequencies has raised the contamination of artificial electromagnetic radiations in the atmosphere to an unprecedented level that is responsible for catastrophe for ecology and electronic devices. Therefore, the lightweight and flexible electromagnetic interference (EMI) shielding materials are of vital importance for controlling the pollution generated by such high-frequency EM radiations for protecting ecology and human health as well as the other nearby devices. In this regard, polymeric textile-based shielding composites have been proved to be the best due to their unique properties such as lightweight, excellent flexibility, low density, ease of processability and ease of handling. Moreover, such composites cover range of applications from everyday use to high-tech applications. Various polymeric textiles such as fibers, yarn, woven, nonwoven, knitted, as well as their hybrid composites have been extensively manipulated physically and/or chemically to act as shielding against such harmful radiations. This review encompasses from basic concept of EMI shielding for beginner to the latest research in polymeric-based textile materials synthesis for experts, covering detailed mechanisms with schematic illustration. The review also covers the gap of materials synthesis and their application on polymeric textiles which could be used for EMI shielding applications. Furthermore, recent research regarding rendering EMI shielding properties at various stages of polymeric textile development is provided for readers with critical analysis. Lastly, the applications along with environmental compliance have also been presented for better understanding.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1281
Author(s):  
Tanja Pušić ◽  
Bosiljka Šaravanja ◽  
Krešimir Malarić

This paper investigates a textile material of low surface mass for its protection against electromagnetic radiation (EMR), which is suitable for composite structures of garments, and for technical and interior applications. The shielding effectiveness against EMR of fabric knitted from polyamide threads coated with silver, measured in the frequency range of 0.9 GHz to 2.4 GHz, indicated a high degree of protection. The key contribution of the paper is the evaluation of the stability of the shielding properties against EM radiation after applying apolar and polar solvents, in synergy with the cyclic process parameters of wet and dry cleaning. The results of the study confirmed the decline in the shielding effectiveness after successive cycles of material treatment with dry and wet cleaning. The effect of wet cleaning in relation to dry cleaning is more apparent, which is due to the damage of the silver coating on the polyamide threads in the knitted fabric.


2021 ◽  
Vol 1826 (1) ◽  
pp. 012093
Author(s):  
J H Angelo ◽  
M S Dias ◽  
M L Pereira Filho ◽  
A F G F Junior ◽  
J M Janiszewski

2021 ◽  
Vol 316 ◽  
pp. 758-764
Author(s):  
M.Yu. Karelina ◽  
S.M. Gaidar ◽  
D.I. Petrovskiy

The purpose of the work was to identify and analyze the causes of corrosion destruction of metal products, used in conditions of animal keeping on farms of the agro-industrial complex, and to find effective methods of combating it. In order to increase corrosion resistance of metal products of livestock farms and complexes, it is proposed to use the developed preparation, which has fungicidal and anticorrosive properties simultaneously. The rate of metal products corrosion during the experiment was evaluated by the museum strain of Aspergillus niger fungi. The article describes the causes of fungal corrosion, the principle of its effect on metals; proposes an inhibitor of complex action for the control of electrochemical and bio-corrosion. The protection efficiency of metal products by the inhibitor was evaluated by the corrosion braking coefficient and the degree of protection. The effect of inhibitor concentration on the rate of low carbon steel bio-corrosion has been studied. It has been proven that the rate of corrosion processes decreased by 50 times, when exposed to a medium, contaminated with fungus spores, on metal samples treated with an inhibitor.


2007 ◽  
Vol 364-366 ◽  
pp. 104-107
Author(s):  
Jong Myoung Lee ◽  
Un Chung Cho

A new dry cleaning methodology named laser shock cleaning and optical inspection technique has been applied not only to remove the particles from the surfaces of image sensors but also to inspect the surfaces automatically before or after the cleaning. In the packaging of CMOS and CCD image sensing modules, the particles generated during the assembly process should be removed from the surfaces of image sensors in order to ensure clear image as well as to enhance the yield. The different kinds of particles were removed from the surfaces by the laser shock cleaning technique which utilizes the airborne shock wave induced by intense laser pulse. For the quantitative evaluation of cleaning performance, number, shape and size of the particles on the surfaces of image sensors were measured by vision inspection technique before and after cleaning. It was found that most particles on the surfaces were successfully removed after the treatment of laser-induced shock waves. The average removal efficiency of the particles was over 95 %. It is interestingly found that the remaining particles after the cleaning are based on organics, which are probably attached during the bonding process.


2021 ◽  
Vol 4 (2) ◽  
pp. 78-81
Author(s):  
N.S.W. Zulkefeli ◽  
W.M.I.W. Ismail ◽  
M.K.A.A. Razab ◽  
M.N. Masri

The conductive paint coating can be used to control the electromagnetic interference in electronic application. Conductive paint coating was made by mixing the epoxy and hardener with cathode waste material (CWM) in order to manipulate their properties. In this study, the conductivity and the thickness of the paint has been studied. The thickness of conductive paint coating was depends on the agglomeration of CWM content. The increasing of wt% of CWM, the thickness of paint is increasing. Bruker D2Phaser X-Ray diffraction has been used in order to get the phase analysis of the paint before and after soaking into Potassium Hydroxide solution


Sign in / Sign up

Export Citation Format

Share Document