Phase-space exploration of unit ensembles in energy management

2020 ◽  
Vol 68 (2) ◽  
pp. 89-96
Author(s):  
Jörg Bremer ◽  
Sebastian Lehnhoff

AbstractCurrently, a transition of the electrical power system occurs that results in replacing large-scale thermal power plants at transmission grid level by small generation units mainly installed in the distribution grid. A shift from the transmission to the distribution grid level and an increase in ancillary service demand is a direct result of this transition, demanding delegation of liabilities to distributed, small energy resources. Decoder-based methods currently are not able to cope with ensembles of individually acting energy resources. Aggregating flexibilities results in folded distributions with unfavorable properties for machine learning decoders. Nevertheless, a combined training set is needed to integrate e. g., a hotel, a small business, or similar with an ensemble of co-generation, heat pump, solar power, or controllable consumers to a single flexibility model. Thus, we improved the training process and use evolution strategies for sampling ensembles.

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Milana Treshcheva ◽  
Irina Anikina ◽  
Vitaly Sergeev ◽  
Sergey Skulkin ◽  
Dmitry Treshchev

The percentage of heat pumps used in thermal power plants (TPPs) in the fuel and energy balance is extremely low in in most countries. One of the reasons for this is the lack of a systematic approach to selecting and justifying the circuit solutions and equipment capacity. This article aims to develop a new method of calculating the maximum capacity of heat pumps. The method proposed in the article has elements of marginal analysis. It takes into account the limitation of heat pump capacity by break-even operation at electric power market (compensation of fuel expenses, connected with electric power production). In this case, the heat pump’s maximum allowable capacity depends on the electric capacity of TPP, electricity consumption for own needs, specific consumption of conditional fuel for electricity production, a ratio of prices for energy resources, and a conversion factor of heat pump. For TPP based on combined cycle gas turbine (CCGT) CCGT-450 with prices at the Russian energy resources markets at the level of 2019, when operating with the maximum heat load, the allowable heat pump capacity will be about 50 MW, and when operating with the minimum heat load—about 200 MW.


Author(s):  
Zhen Xian Lin ◽  
Lin Fu

With the process acceleration of China’s energy conservation and the full development of the market economy, the environmental protection is to coexist with the power plants’ benefits for thermal power plants. Relative to the traditional mode named “determining power by heat”, it is not adequate that the heating demand is only to be met, the maximizations of economy benefits and social benefits are also demanded. At present, several large-scale central heating modes are proposed by domestic and foreign scholars, such as the parallel arrangement and series arrangement of heating system for the traditional heating units and NCB heating units (NCB heating unit is a new condensing-extraction-backpressure steam turbine and used to generate the power and heat, it has the function of extraction heating turbine at constant power, back pressure turbine or extraction and back pressure heating turbine and extraction condensing heating turbine.), and running mode with heating units and absorbed heat pumps, and so on. Compare and analyze their heating efficiency, heating load, heating area, power generation, and the impact on the environment. The best heating mode can be found under the different boundary conditions, it can be used to instruct the further work. The energy utilization efficiency will be further improved.


Author(s):  
Hans Mu¨ller-Steinhagen

On October 30th 2009, a major industrial consortium initiated the so-called DESERTEC project which aims at providing by 2050 15% of the European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. In the heart of this concept are solar thermal power plants which can provide affordable, reliable and dispatchable electricity. While this technology has been known for about 100 years, new developments and market introduction programs have recently triggered world-wide activities leading to the present project pipeline of 8.5 GW and 42 billion Euro. To become competitive with mid-load electricity from conventional power plants within the next 10–15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations which are presently in the development or even demonstration stage. The scale of construction, the high temperatures and the naturally transient operation provide formidable challenges for academic and industrial R&D. Experimental and theoretical research involving all mechanisms of heat transfer and fluid flow is required together with large-scale demonstration to resolve the combined challenges of performance and cost.


Author(s):  
D Pudjianto ◽  
C Ramsay ◽  
G Strbac

This article presents the concepts of the microgrid and the virtual power plant (VPP) as vehicles to facilitate cost-efficient integration of distributed energy resources (DERs) into the existing power system. These concepts were designed to enhance the system value and the controllability of DER and to provide frameworks for the development of interfaces among energy and ancillary service resources, system operators, and energy market participants. Through aggregation, DER access to energy markets is facilitated, and DER-based system support and ancillary services can be provided. By enabling this additional functionality, it is envisaged that system performance measured in the form of energy efficiency, power quality, security, and economic operation can be improved. In this paper, the technical and commercial functionality facilitated through the microgrid and VPP concepts is described. The paper concludes with case studies demonstrating the application of the concepts on a test system.


Author(s):  
KRUNAL P. MUDAFALE ◽  
HEMANT S. FARKADE

This paper presents a simulation of the economizer zone, which allows for the condition of the shell-side flow and tube-side and tube-wall, thermal fields, and of the shell-tube heat-exchange. Selection of the economizer zone from the thermal power plant only because, it is found trends of failure that the economizer is the zone where the leakages are found more. The maximum number of cause of failure in economizer unit is due to flue gas erosion. The past failure details revels that erosion is more in U-bend areas of Economizer Unit because of increase in flue gas velocity near these bends. But it is observed that the velocity of flue gases surprisingly increases near the lower bends as compared to upper ones. The model is solved using conventional CFD techniques by STAR- CCM+ software. In which the individual tubes are treated as sub-grid features. A geometrical model is used to describe the multiplicity of heat-exchanging structures and the interconnections among them. The Computational Fluid Dynamics (CFD) approach is utilised for the creation of a three-dimensional model of the economizer coil. With equilibrium assumption applied for description of the system chemistry. The flue gas temperature, pressure and velocity field of fluid flow within an economizer tube using the actual boundary conditions have been analyzed using CFD tool. Such as the ability to quickly analyse a variety of design options without modifying the object and the availability of significantly more data to interpret the results. This study is a classic example of numerical investigation into the problem of turbulent reacting flows in large scale furnaces employed in thermal power plants for the remediation of ash deposition problems. And the experimental setup is from Chandrapur Super Thermal Power Station, Chandrapur having the unit no IV of 210 MW energy generations.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2425 ◽  
Author(s):  
Jonas Fausing Olesen ◽  
Hamid Reza Shaker

Thermal power plants are an important asset in the current energy infrastructure, delivering ancillary services, power, and heat to their respective consumers. Faults on critical components, such as large pumping systems, can lead to material damage and opportunity losses. Pumps plays an essential role in various industries and as such clever maintenance can ensure cost reductions and high availability. Prognostics and Health Management, PHM, is the study utilizing data to estimate the current and future conditions of a system. Within the field of PHM, Predictive Maintenance, PdM, has been gaining increased attention. Data-driven models can be built to estimate the remaining-useful-lifetime of complex systems that would be difficult to identify by man. With the increased attention that the Predictive Maintenance field is receiving, review papers become increasingly important to understand what research has been conducted and what challenges need to be addressed. This paper does so by initially conceptualising the PdM field. A structured overview of literature in regard to application within PdM is presented, before delving into the domain of thermal power plants and pump systems. Finally, related challenges and trends will be outlined. This paper finds that a large number of experimental data-driven models have been successfully deployed, but the PdM field would benefit from more industrial case studies. Furthermore, investigations into the scale-ability of models would benefit industries that are looking into large-scale implementations. Here, examining a method for automatic maintenance of the developed model will be of interest. This paper can be used to understand the PdM field as a broad concept but does also provide a niche understanding of the domain in focus.


Author(s):  
Tian Zhao ◽  
Qun Chen

In this contribution we introduced an integrated energy system consists of thermal power plants, combined heat-power (CHP) plants and wind power plants, and aimed to supply electricity and heat to users simultaneously. A large-scale battery, a TES device and heat transfer devices are included also. During the operation time of the battery, the TES device stores the generated heat and meanwhile supplies heat to users. Applying the power flow method, the electro-thermal analogy and the entransy dissipation-based thermal resistance method, we constructed the power flow model of the system. Besides, we optimized the system aimed to minimize wind curtailments. Optimization results presented for a typical day the system reduces wind curtailment percentage from 40.63 % to 13.70 % and supply 5% heat load. Besides, the operation strategy of the battery is to charge at night and discharge in the day.


Sign in / Sign up

Export Citation Format

Share Document