Partitioning biochemical reference data intosubgroups: comparison of existing methods

Author(s):  
Ari Lahti

AbstractFour existing methods for partitioning biochemical reference data into subgroups are compared. Two of these, the method of Sinton et al. and that of Ichihara and Kawai, are based on a quotient of a difference between the subgroups and the reference interval for the combined distribution. The criterion of Sinton et al. appears rather stringent and could lead to recommendations to apply a common reference interval in many cases where establishment of group-specific reference intervals would be more useful. The method of Ichihara and Kawai is similar to that of Sinton et al., but their criterion, based on a quantity derived from between-group and within-group variances, seems to lead to inconsistent results when applied to some model cases. These two methods have the common weakness of using gross differences between subgroup distributions as an indicator of differences between their reference limits, while distributions with different means can actually have equal reference limits and those with equal means can have different reference limits. The idea of Harris and Boyd to require that the proportions of the subgroup distributions outside the common reference limits be kept reasonably close to the ideal value of 2.5% as a prerequisite for using common reference limits seems to have been a major improvement. The other two methods considered, that of Harris and Boyd and the “new method” follow this idea. The partitioning criteria of Harris and Boyd have previously been shown to provide a poor correlation to those proportions, however, and the weaknesses of their method are summarized in a list of five drawbacks. Different versions of the new method offer improvements to these drawbacks.

2002 ◽  
Vol 48 (11) ◽  
pp. 1987-1999 ◽  
Author(s):  
Ari Lahti ◽  
Per Hyltoft Petersen ◽  
James C Boyd

Abstract Background: The aims of this report were to examine how unequal subgroup prevalences in the source population may affect reference interval partitioning decisions and to develop generally applicable guidelines for partitioning gaussian-distributed data. Methods: We recently proposed a new model for partitioning reference intervals when the underlying data distribution is gaussian. This model is based on controlling the proportions of the subgroup distributions that fall outside each of the common reference limits, using the distances between the reference limits of the subgroup distributions as functions to these proportions. We examine the significance of the unequal prevalence effect for the partitioning problem and quantify it for distance partitioning criteria by deriving analytical expressions to express these criteria as a function of the ratio of prevalences. An application example, illustrating various aspects of the importance of the prevalence effect, is also presented. Results: Dramatic shrinkage of the critical distances between reference limits of the subgroups needed for partitioning was observed as the ratio of prevalences, the larger one divided by the smaller one, was increased from unity. Because of this shrinkage, the same critical distances are not valid for all ratios of prevalences, but specific critical distances should be used for each particular value of this ratio. Although proportion criteria used in determining the need for reference interval partitioning are not dependent on the prevalence effect, this effect should be accounted for when these criteria are being applied by adjusting the sample sizes of the subgroups to make them correspond to the ratio of prevalences. Conclusions: The prevalences of subgroups in the reference population should be known and observed in the calculations for every reference interval study, irrespective of whether distance or proportion criteria are being used to determine the need for reference interval partitioning. We present detailed methods to account for the prevalences when applying each of these types of criteria. Analytical expressions for the distance criteria, to be used when high precision is needed, and approximate distances, to be used in practical work, are derived. General guidelines for partitioning gaussian distributed data are presented. Following these guidelines and using the new model, we suggest that partitioning can be performed more reliably than with any of the earlier models because the new model not only offers an improved correspondence between the critical distances and the critical proportions, but also accounts for the prevalence effect.


2021 ◽  
Vol 45 (2) ◽  
pp. 131-134
Author(s):  
Britta Amodeo ◽  
Aline Schindler ◽  
Ulrike Schacht ◽  
Hans Günther Wahl

Abstract Objectives Most laboratories have difficulties to determine their own reference intervals for the diagnostic evaluation of patient results by direct methods. Therefore, data is often just taken from the literature or package inserts of the analytical tests. Methods The section on Reference Limits of the German Society for Clinical Chemistry and Laboratory Medicine (DGKL) first uploaded the Reference Limit Estimator (RLE) as an R-program with MS Excel-interface on the DGKL home page and now this tool is implemented in the commercial Laboratory Information System OPUS::L (OSM AG Essen, Germany). We used this OPUS::L “Population specific Reference Limits” tool online with our laboratory database. First calculations were done using the example of lipase. Results The manufacturer’s original reference interval for lipase 12–53 U/L (adults) was changed to age dependent upper reference limits of <41 U/L (<20 years), <60 U/L (20–80 years) and <70 U/L (>80 years). Conclusions By means of the OPUS::L “Population specific Reference Limits” tool we were able to establish our laborarotry specific reference interval for plasma lipase activity. The new reference limits helped to solve an old problem of implausible low elevated lipase values.


Author(s):  
O E Okosieme ◽  
Medha Agrawal ◽  
Danyal Usman ◽  
Carol Evans

Background: Gestational TSH and FT4 reference intervals may differ according to assay method but the extent of variation is unclear and has not been systematically evaluated. We conducted a systematic review of published studies on TSH and FT4 reference intervals in pregnancy. Our aim was to quantify method-related differences in gestation reference intervals, across four commonly used assay methods, Abbott, Beckman, Roche, and Siemens. Methods: We searched the literature for relevant studies, published between January 2000 and December 2020, in healthy pregnant women without thyroid antibodies or disease. For each study, we extracted trimester-specific reference intervals (2.5–97.5 percentiles) for TSH and FT4 as well as the manufacturer provided reference interval for the corresponding non-pregnant population. Results: TSH reference intervals showed a wide range of study-to-study differences with upper limits ranging from 2.33 to 8.30 mU/L. FT4 lower limits ranged from 4.40–13.93 pmol/L, with consistently lower reference intervals observed with the Beckman method. Differences between non-pregnant and first trimester reference intervals were highly variable, and for most studies the TSH upper limit in the first trimester could not be predicted or extrapolated from non-pregnant values. Conclusions: Our study confirms significant intra and inter-method disparities in gestational thyroid hormone reference intervals. The relationship between pregnant and non-pregnant values is inconsistent and does not support the existing practice in some laboratories of extrapolating gestation references from non-pregnant values. Laboratories should invest in deriving method-specific gestation reference intervals for their population.


2021 ◽  
Author(s):  
K Aaron Geno ◽  
Matthew S Reed ◽  
Mark A Cervinski ◽  
Robert D Nerenz

Abstract Introduction Automated free thyroxine (FT4) immunoassays are widely available, but professional guidelines discourage their use in pregnant women due to theoretical under-recoveries attributed to increased thyroid hormone binding capacity and instead advocate the use of total T4 (TT4) or free thyroxine index (FTI). The impact of this recommendation on the classification of thyroid status in apparently euthyroid pregnant patients was evaluated. Methods After excluding specimens with thyroid autoantibody concentrations above reference limits, thyroid-stimulating hormone (TSH), FT4, TT4, and T-uptake were measured on the Roche Cobas® platform in remnant clinical specimens from at least 147 nonpregnant women of childbearing age and pregnant women at each trimester. Split-sample comparisons of FT4 as measured by the Cobas and equilibrium dialysis were performed. Results FT4 decreased with advancing gestational age by both immunoassay and equilibrium dialysis. TSH declined during the first trimester, remained constant in the second, and increased throughout the third, peaking just before delivery. Interpretation of TT4 concentrations using 1.5-times the nonpregnant reference interval classified 13.6% of first trimester specimens below the lower reference limit despite TSH concentrations within trimester-specific reference intervals. Five FTI results from 480 pregnant individuals (about 1.0%) fell outside the manufacturer’s reference interval. Conclusions Indirect FT4 immunoassay results interpreted in the context of trimester-specific reference intervals provide a practical and viable alternative to TT4 or FTI. Declining FT4 and increasing TSH concentrations near term suggest that declining FT4 is not an analytical artifact but represents a true physiological change in preparation for labor and delivery.


2012 ◽  
Vol 50 (5) ◽  
Author(s):  
Hallvard Lilleng ◽  
Stein Harald Johnsen ◽  
Tom Wilsgaard ◽  
Svein Ivar Bekkelund

AbstractLaboratory reference intervals are not necessarily reflecting the range in the background population. This study compared creatine kinase (CK) reference intervals calculated from a large sample from a Norwegian population with those elaborated by the Nordic Reference Interval Project (NORIP). It also assessed the pattern of CK-normalization after standardized control analyses.New upper reference limits (URL) CK values were calculated after exclusion of individuals with risk of hyperCKemia and including individuals with incidentally detected hyperCKemia after they had completed a standardized control analysis. After exclusion of 5924 individuals with possible causes of hyperCKemia, CK samples were analyzed in 6904 individuals participating in the 6th survey of The Tromsø Study. URL was defined as the 97.5 percentile.New URL in women was 207 U/L. In men <50 years it was 395 U/L and in men ≥50 years 340 U/L. In individuals with elevated CK, normalization grade after control analysis was inversely correlated to the CK level (p<0.04).URL CK values in women and in men <50 years of age were in accordance with URL CK values given by the NORIP. In men ≥50 years, a higher URL was found and the findings suggest an upward adjustment of URL in this age group.


2020 ◽  
Vol 182 (5) ◽  
pp. 459-471
Author(s):  
Marco Mezzullo ◽  
Guido Di Dalmazi ◽  
Alessia Fazzini ◽  
Margherita Baccini ◽  
Andrea Repaci ◽  
...  

Objective To evaluate the independent impact of age, obesity and metabolic risk factors on 13 circulating steroid levels; to generate reference intervals for adult men. Design Cross-sectional study. Methods Three hundred and fifteen adults, drug-free and apparently healthy men underwent clinical and biochemical evaluation. Thirteen steroids were measured by LC-MS/MS and compared among men with increasing BMI. Moreover, the independent impact of age, BMI and metabolic parameters on steroid levels was estimated. Upper and lower reference limits were generated in steroid-specific reference sub-cohorts and compared with dysmetabolic sub-cohorts. Results We observed lower steroid precursors and testosterone and increase in estrone levels in men with higher BMI ranges. By multivariate analysis, 17-hydroxyprogesterone and dihydrotestosterone decreased with BMI, while cortisol decreased with waist circumference. Estrone increased with BMI and systolic blood pressure. Testosterone decreased with worsening insulin resistance. 17-hydroxypregnenolone and corticosterone decreased with increasing total/HDL-cholesterol ratio. Age-related reference intervals were estimated for 17-hydroxypregnenolone, DHEA, 17-hydroxyprogesterone, corticosterone, 11-deoxycortisol, cortisol and androstenedione, while age-independent reference intervals were estimated for progesterone, 11-deoxycorticosterone, testosterone, dihydrotestosterone, estrone and estradiol. Testosterone lower limit was 2.29 nmol/L lower (P = 0.007) in insulin resistant vs insulin sensitive men. Furthermore, the upper limits for dihydrotestosterone (−0.34 nmol/L, P = 0.045), cortisol (−87 nmol/L, P = 0.045–0.002) and corticosterone (−10.1 nmol/L, P = 0.048–0.016) were lower in overweight/obese, in abdominal obese and in dyslipidaemic subjects compared to reference sub-cohorts, respectively. Conclusions Obesity and mild unmedicated metabolic risk factors alter the circulating steroid profile and bias the estimation of reference limits for testosterone, dihydrotestosterone, cortisol and corticosterone. Applying age-dependent reference intervals is mandatory for steroid precursors and corticosteroids.


2018 ◽  
Vol 56 (6) ◽  
pp. 964-972 ◽  
Author(s):  
Victoria Higgins ◽  
Dorothy Truong ◽  
Nicole M.A. White-Al Habeeb ◽  
Angela W.S. Fung ◽  
Barry Hoffman ◽  
...  

Abstract Background: 1,25-dihydroxyvitamin D (1,25(OH)2D), the biologically active vitamin D metabolite, plays a critical role in calcium and phosphate homeostasis. 1,25(OH)2D is measured to assess calcium and phosphate metabolism, particularly during periods of profound growth and development. Despite its importance, no reliable pediatric reference interval exists, with those available developed using adult populations or out-dated methodologies. Using the fully automated chemiluminescence immunoassay by DiaSorin, we established 1,25(OH)2D pediatric reference intervals using healthy children and adolescents from the CALIPER cohort. Methods: Serum samples from healthy subjects (0 to <19 years) were analyzed for 1,25(OH)2D using the DiaSorin LIAISON XL assay and age-specific reference intervals were established. The Mann-Whitney U-test was used to determine seasonal differences. Pooled neonatal and infantile samples were quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine if elevated concentrations during the first year of life may be attributed to cross-reacting moieties. Results: Three reference interval age partitions were required with highest levels in subjects 0 to <1 year (77–471 pmol/L), which declined and narrowed after 1 year (113–363 pmol/L) and plateaued at 3 years (108–246 pmol/L). 1,25(OH)2D concentration was not significantly affected by seasonal variation or sex. Elevated 1,25(OH)2D concentrations in neonatal and infantile samples may be the result of an interfering substance. The absence of 3-epi-1,25-dihydroxyvitamin D in the pooled samples makes it unlikely to be the interfering moiety. Conclusions: Pediatric reference intervals for 1,25(OH)2D were established to improve test result interpretation in children and adolescents. 1,25(OH)2D is elevated in a proportion of neonates and infants, which may be the result of a cross-reacting moiety.


Author(s):  
Bassel Matli ◽  
Andreas Schulz ◽  
Thomas Koeck ◽  
Tanja Falter ◽  
Johannes Lotz ◽  
...  

Abstract Objectives Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (DM). The homeostatic model assessment of insulin resistance (HOMA-IR) provides an estimate for IR from fasting glucose and insulin serum concentrations. The aim of this study was to obtain a reference interval for HOMA-IR for a specific insulin immunoassay. Methods The Gutenberg Health Study (GHS) is a population-based, prospective, single-center cohort study in Germany with 15,030 participants aged 35–74 years. Fasting glucose, insulin, and C-peptide were available in 10,340 participants. HOMA-IR was calculated in this group and three reference subgroups with increasingly more stringent inclusion criteria. Age- and sex-dependent distributions of HOMA-IR and reference intervals were obtained. In a substudy three insulin assays were compared and HOMA-IR estimated for each assay. Results Among the 10,340 participants analyzed there were 6,590 non-diabetic, 2,901 prediabetic, and 849 diabetic individuals. Median (interquartile range [IQR]) HOMA-IR was 1.54 (1.13/2.19), 2.00 (1.39/2.99), and 4.00 (2.52/6.51), respectively. The most stringently selected reference group consisted of 1,065 persons. Median (IQR) HOMA-IR was 1.09 (0.85/1.42) with no significant difference between men and women. The 97.5th percentile was 2.35. There was a non-significant trend towards higher values with older age. Comparison of three immunoassays for insulin showed an unsatisfactory correlation among the assays and systematic differences in calculated HOMA-IR. Conclusions We present HOMA-IR reference intervals for adults derived by more or less stringent selection criteria for the reference cohort. In addition we show that assay specific reference intervals for HOMA-IR are required.


Author(s):  
Rainer Haeckel ◽  
Werner Wosniok ◽  
Farhad Arzideh ◽  
Jakob Zierk ◽  
Eberhard Gurr ◽  
...  

AbstractIn a recent EFLM recommendation on reference intervals by Henny et al., the direct approach for determining reference intervals was proposed as the only presently accepted “gold” standard. Some essential drawbacks of the direct approach were not sufficiently emphasized, such as unacceptably wide confidence limits due to the limited number of observations claimed and the practical usability for only a limited age range. Indirect procedures avoid these disadvantages of the direct approach. Furthermore, indirect approaches are well suited for reference limits with large variations during lifetime and for common reference limits.


Sign in / Sign up

Export Citation Format

Share Document