scholarly journals A modular in vitro flow model to analyse blood-surface interactions under physiological conditions

2021 ◽  
Vol 7 (2) ◽  
pp. 171-174
Author(s):  
Juliane Valtin ◽  
Stephan Behrens ◽  
Manfred F. Maitz ◽  
Florian Schmieder ◽  
Frank Sonntag ◽  
...  

Abstract Newly developed materials for blood-contacting devices need to undergo hemocompatibility testing to prove compliance with clinical requirements. However, many current in vitro models disregard the influence of flow conditions and blood exchange as it occurs in vivo. Here, we present a flow model which allows testing of blood-surface interactions under more physiological conditions. This modular platform consists of a triple-pump-chip and a microchannel-chip with a customizable surface. Flow conditions can be adjusted individually within the physiological range. A performance test with whole blood confirmed the hemocompatibility of our modular platform. Hemolysis was negligible, inflammation and hemostasis parameters were comparable to those detected in a previously established quasi-static whole blood screening chamber. The steady supply of fresh blood avoids secondary effects by nonphysiological accumulation of activation products. Experiments with three subsequently tested biomaterials showed results similar to literature and our own experience. The reported results suggest that our developed flow model allows the evaluation of blood-contacting materials under physiological flow conditions. By adjusting the occurring wall shear stress, the model can be adapted for selected test conditions.

Author(s):  
Rayanne Pinto Costa ◽  
Blaise Simplice Talla Nwotchouang ◽  
Junyao Yao ◽  
Dipankar Biswas ◽  
David Casey ◽  
...  

Abstract Blood, a multiphase fluid comprised of plasma, blood cells, and platelets, is known to exhibit a shear-thinning behavior at low shear rates and near-Newtonian behavior at higher shear rates. However, less is known about the impact of its multiphase nature on the transition to turbulence. In this study, we experimentally determined the critical Reynolds number at which the flow began to transition to turbulence downstream of an eccentric stenosis for whole porcine blood and a Newtonian blood analog (water-glycerin mixture). Velocity profiles for both fluids were measured under steady-state flow conditions using an ultrasound Doppler probe placed 12 diameters downstream of an eccentric stenosis. Velocity was recorded at 21 locations along the diameter at 11 different flow rates. Normalized turbulent kinetic energy was used to determine the critical Reynolds number for each fluid. Blood rheology was measured before and after each experiment. Tests were conducted on five samples of each fluid inside a temperature-controlled in-vitro flow system. The viscosity at shear rate 1000 s 1 was used to define the Reynolds number for each fluid. The mean critical Reynolds numbers for blood and water-glycerin were 470 ± 27.5 and 395 ± 10, respectively, indicating a ~19% delay in transition to turbulence for whole blood compared to the Newtonian fluid. This finding is consistent with a previous report for steady flow in a straight pipe, suggesting some aspect of blood rheology may serve to suppress, or at least delay, the onset of turbulence in vivo.


2021 ◽  
Vol 21 (2) ◽  
pp. 497-515
Author(s):  
Chunbo Jiang ◽  
Qi Zhou ◽  
Wangyang Yu ◽  
Chen Yang ◽  
Binliang Lin

Abstract. Flood disasters frequently threaten people and property all over the world. Therefore, an effective numerical model is required to predict the impacts of floods. In this study, a dynamic bidirectional coupled hydrologic–hydrodynamic model (DBCM) is developed with the implementation of characteristic wave theory, in which the boundary between these two models can dynamically adapt according to local flow conditions. The proposed model accounts for both mass and momentum transfer on the coupling boundary and was validated via several benchmark tests. The results show that the DBCM can effectively reproduce the process of flood propagation and also account for surface flow interaction between non-inundation and inundation regions. The DBCM was implemented for the floods simulation that occurred at Helin Town located in Chongqing, China, which shows the capability of the model for flood risk early warning and future management.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1295-1298 ◽  
Author(s):  
Yasuaki Shida ◽  
Kenji Nishio ◽  
Mitsuhiko Sugimoto ◽  
Tomohiro Mizuno ◽  
Masaaki Hamada ◽  
...  

Abstract The metalloprotease ADAMTS13 is assumed to regulate the functional levels of von Willebrand factor (VWF) appropriate for normal hemostasis in vivo by reducing VWF multimer size, which directly represents the thrombogenic activity of this factor. Using an in vitro perfusion chamber system, we studied the mechanisms of ADAMTS13 action during platelet thrombus formation on a collagen surface under whole blood flow conditions. Inhibition studies with a function-blocking anti-ADAMTS13 antibody, combined with immunostaining of thrombi with an anti-VWF monoclonal antibody that specifically reflects the VWF-cleaving activity of ADAMTS13, provided visual evidence for a shear rate–dependent action of ADAMTS13 that limits thrombus growth directly at the site of the ongoing thrombus generation process. Our results identify an exquisitely specific regulatory mechanism that prevents arterial occlusion under high shear rate conditions during mural thrombogenesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2878-2878 ◽  
Author(s):  
Eduardo Arellano-Rodrigo ◽  
Irene Lopez-Vilchez ◽  
Patricia Molina ◽  
Marcos Pino ◽  
Maribel Diaz-Ricart ◽  
...  

Abstract BACKGROUND: Despite the proven efficacy and safety profile of dabigatran as compared to warfarin, bleeding remains a concern as with all anticoagulants and the reversal of dabigatran’s anticoagulant effect for emergency procedures remains controversial. Recently, idarucizumab, a specific antidote for dabigatran, has been functionally characterized and its efficacy demonstrated in animal models and healthy volunteer studies. AIMS: We explored the effects of dabigatran on hemostasis in human blood focusing on possible interference with platelet and coagulation responses to vessel injury under flow conditions. We also compared the potential efficacy of idarucizumab with procoagulant strategies such as prothrombin complex concentrates (PCC), activated PCC (aPCC) or rFVIIa at reversing the antithrombotic action of dabigatran to better understand local processes in response to injury. METHODS: Concentrations of dabigatran equivalent to the Cmax reported at steady state after therapy with 150 mg twice daily (184 ng/mL) were added in vitro to blood aliquots from 11 healthy donors. Whole blood samples were used to evaluate modifications in different coagulation biomarkers: 1) fibrin and platelet deposition on damaged vascular segments with whole blood under flow conditions at a shear rate of 600 s-1, 2) dynamics of thrombin generation (TG) in plasma using a fluorogenic assay (Technothrombin TGA) and 3) viscoelastic parameters of clot formation in whole blood using by thromboelastometry (ROTEM) The efficacy of specific reversal with idarucizumab 0.3, 1 and 3 mg/mL was compared with that of non specific procoagulant concentrates such as aPCC 25 and 75 IU/kg, PCC 70 IU/kg, or rFVIIa 120 µg/kg. RESULTS: Dabigatran (184 ng/mL) caused a pronounced 85% reduction of fibrin coverage on the damaged vessel from 67.2±9.8 to 9.5±1.3 % (p<0.01) and a moderate 35% reduction of platelet deposition from 25.9±2.7 to 16.9±2.9 % (p<0.01). Dabigatran also altered dynamics of TG with a prolongation of the lag-phase and a reductions in the maximal thrombin peak and potential of thrombin generation (p<0.01). In ROTEM, dabigatran significantly prolonged clotting time to 352±60 sec (p<0.01) and clot formation time to 312±76 sec (p<0.05). Idarucizumab completely reversed the alterations in all different biomarkers induced by dabigatran. Additionally, fibrin coverage and platelet deposition were restored to baseline values in flow studies. TG and ROTEM parameters also returned to normal values after idarucizumab. Reversal strategies with aPCC or PCC normalized and even over-compensated alterations in TG kinetics and partially improved alterations in ROTEM parameters caused by dabigatran. Interestingly, aPCC and PCC moderately improved the alteration in fibrin deposition caused by dabigatran in flow studies (15.7±8.2, 29.3±14.5, and 15.2±3.7 %, respectively for aPCCs 25, 75 or PCCs 70 IU/kg). However, levels of fibrin formation did not return to baseline values before dabigatran (67.2±32.5 %). rFVIIa showed only moderate effects on some of the biomarkers evaluated, though values were never restored to the baseline. CONCLUSIONS: Dabigatran (184 ng/mL) added to blood from healthy volunteers caused evident alterations in hemostasis parameters related to its recognized anticoagulant action. Procoagulant concentrates significantly compensated for the overall anti-hemostastic action of dabigatran. Overall, 75 U/kg aPCC seemed the more efficient nonspecific reversal therapy. In clear contrast with non specific procoagulant strategies, idarucizumab, the specific antidote to dabigatran completely reversed all alterations in coagulation parameters evaluated in circulating human blood and in assay systems. (Supported by SAF 2011-2814 and PI13/00517, Spanish Gov & FEDER) Disclosures van Ryn: Boehringer Ingelheim Pharma: Employment. Escolar:Boehringer Ingelheim Pharma: Investigator Sponsored Research Funding Other.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2319-2319
Author(s):  
Nikhil Vilas Joshi ◽  
Jennifer Raftis ◽  
AJ Lucking ◽  
Narendra Tandon ◽  
M Fitzpatrick ◽  
...  

Abstract Abstract 2319 Introduction Thrombosomes are novel lyophilized human platelet derivatives that retain a number of key platelet structural and functional properties. Building on preliminary in vitro studies, we here sought to investigate whether Thrombosomes, suspended in platelet free plasma (PFP), would enhance and be incorporated in thrombus generated under flow conditions within a validated and well-characterised model of deep arterial injury. Methods PFP was obtained by centrifuging citrated whole blood from six healthy non-smoking volunteers and filtering with a 0.22μm filter. Thrombosomes were suspended in 60 mL of PFP to generate final concentrations of 20 and 200 × 106Thrombosomes /mL. Immediately prior to use, 1.2 mL of 1M CaCl2 was added to permit fibrin generation. Thrombus formation was assessed using the Badimon Chamber at low (212 s−1) and high (1690 s−1) shear rates with porcine aortic tunica media as the thrombogenic substrate. Total thrombus area and platelet-rich area were measured histomorphometrically using conventional and immunohistochemical staining respectively. Fluorescent labeled Thrombosomes were added to the extracorporeal circuit in the Badimon chamber to study the ex vivo thrombus generation in the whole blood. Electron microscopy of Thrombosomes and platelets was undertaken. Results Thrombosomes contributed towards thrombus formation in whole human blood as evidenced by incorporation of fluorescent-labeled Thrombosomes into the thrombus. Immunohistochemical staining of the glycoprotein IIb/IIIa receptor confirmed incorporation of Thrombosomes into the thrombus. In the high shear chamber, mean thrombus area increased in a dose-dependent manner following the addition of Thrombosomes (704 μm2 [95% CI, 224 – 1184 μm2], 1511 μm2 [95% CI, 687 – 2336 μm2] and 2378 μm2 [95% CI, 1567 – 3189 μm2] for PFP and Thrombosomes at concentrations of 20 and 200 × 106/mL respectively [P= 0.003]). In the low shear chamber, total thrombus area for the PFP was 4962 μm2 (95% CI, 2489 – 7434 μm2). The addition of Thrombosomes at concentrations of 20 and 200 × 106/mL led to a numerical increase in mean thrombus area to 6170 μm2 (95% CI, 3944 – 8397 μm2) and 7504 μm2 (95% CI, 3864 – 11144 μm2) respectively, although this was not statistically significant (P= 0.2969). Conclusions Thrombosomes suspended in PFP and exposed to injured arterial tissue under physiologically relevant flow conditions are incorporated into thrombus and enhance thrombus formation in a dose dependent manner. These findings act as impetus to undertake clinical studies of this rehydrated, lyophilized infusible hemostatic platelet product. Disclosures: Fitzpatrick: Cellphire Inc.: Employment, Equity Ownership. Feuerstein:Cellphire: Consultancy. Newby:Cellphire: Research Funding.


1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


1980 ◽  
Vol 44 (01) ◽  
pp. 006-008 ◽  
Author(s):  
D Bergqvist ◽  
K-E Arfors

SummaryIn a model using an isolated rabbit mesenteric preparation microvessels were transected and the time until haemostatic plugs formed was registered. Perfusion of platelet rich plasma gave no haemostasis whereas whole blood did. Addition of chlorpromazine or adenosine to the whole blood significantly prolonged the time for haemostasis, and addition of ADP to the platelet rich plasma significantly shortened it. It is concluded that red cells are necessary for a normal haemostasis in this model, probably by a combination of a haemodynamic and ADP releasing effect.The fundamental role of platelets in haemostatic plug formation is unquestionable but there are still problems concerning the stimulus for this process to start. Three platelet aggregating substances have been discussed – thrombin, adenosine diphosphate (ADP) and collagen. Evidence speaking in favour of thrombin is, however, very minimal, and the discussion has to be focused on collagen and ADP. In an in vitro system using polyethylene tubings we have shown that "haemostasis" can be obtained without the presence of collagen but against these results can be argued that it is only another in vitro test for platelet aggregation (1).To be able to induce haemostasis in this model, however, the presence of red blood cells is necessary. To further study this problem we have developed a model where haemostatic plug formation can be studied in the isolated rabbit mesentery and we have briefly reported on this (2).Thus, it is possible to perfuse the vessels with whole blood as well as with platelet rich plasma (PRP) and different pharmacological agents of importance.


1994 ◽  
Vol 72 (05) ◽  
pp. 685-692 ◽  
Author(s):  
Michael T Nurmohamed ◽  
René J Berckmans ◽  
Willy M Morriën-Salomons ◽  
Fenny Berends ◽  
Daan W Hommes ◽  
...  

SummaryBackground. Recombinant hirudin (RH) is a new anticoagulant for prophylaxis and treatment of venous and arterial thrombosis. To which extent the activated partial thromboplastin time (APTT) is suitable for monitoring of RH has not been properly evaluated. Recently, a capillary whole blood device was developed for bed-side monitoring of the APTT and it was demonstrated that this device was suitable to monitor heparin therapy. However, monitoring of RH was not evaluated.Study Objectives. To evaluate in vitro and ex vivo the responsiveness and reproducibility for hirudin monitoring of the whole blood monitor and of plasma APTT assays, which were performed with several reagents and two conventional coagulometers.Results. Large interindividual differences in hirudin responsiveness were noted in both the in vitro and the ex vivo experiments. The relationship between the APTT, expressed as clotting time or ratio of initial and prolonged APTT, and the hirudin concentration was nonlinear. A 1.5-fold increase of the clotting times was obtained at 150-200 ng/ml plasma. However, only a 2-fold increase was obtained at hirudin levels varying from 300 ng to more than 750 ng RH/ml plasma regardless of the assays. The relationship linearized upon logarithmic conversion of the ratio and the hirudin concentration. Disregarding the interindividual differences, and presuming full linearity of the relationship, all combinations were equally responsive to hirudin.Conclusions. All assays were equally responsive to hirudin. Levels up to 300 ng/ml plasma can be reliably estimated with each assay. The manual device may be preferable in situations where rapid availability of test results is necessary.


1971 ◽  
Vol 25 (02) ◽  
pp. 354-378 ◽  
Author(s):  
R Gottlob ◽  
L Stockinger ◽  
U Pötting ◽  
G Schattenmann

SummaryIn vitro whole blood clots of various ages, experimental thrombi produced in the jugular vein of rabbits and human thrombi from arteries and veins were examined in semi-thin sections and by means of electron microscopy.In all types of clots examined a typical course of retraction was found. Retraction starts with a dense excentrical focus which grows into a densification ring. After 24 hours the entire clot becomes almost homogeneously dense; later a secondary swelling sets in.Shortly after coagulation the erythrocytes on the rim of the clot are bi-concave discs. They then assume the shape of crenate spheres, turn into smooth spheres and finally become indented ghosts which have lost the largest part of their contents. In the inner zone, which makes up the bulk of the clot, we observed bi-concave discs prior to retraction. After retraction we see no crenations but irregularly shaped erythrocytes. Once the secondary swelling sets in, the cross-section becomes polygonal and later spherical. After extensive hemolysis we observe the “retiform thrombus” made up of ghosts.Experimental and clinical thrombi present the same morphology but are differentiated from in vitro clots by: earlier hemolysis, immigration of leukocytes, formation of a rim layer consisting of fibrin and thrombocytes, and the symptoms of organization. Such symptoms of organization which definitely will prevent lysis with streptokinase were found relatively late in experimental and clinical thrombi. Capillary buds and capillary loops were never found in clinical thrombi prior to the third month.The morphological findings agree with earlier physical and enzymatic investigations. The observation that phenomena of reorganization occur relatively late and frequently only in the rim areas of large thrombi explains why lytic therapy is possible in some of the chronic obliterations.


Sign in / Sign up

Export Citation Format

Share Document