scholarly journals Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells

2020 ◽  
Vol 18 (1) ◽  
pp. 1481-1494
Author(s):  
Lang Zhang ◽  
Liangliang Liu ◽  
Aiping Xiao ◽  
Siqi Huang ◽  
Defang Li

AbstractJute (Corchorus capsularis L.) is an annual herb of the bast fiber plant and has great potentials in food and medicinal usages because of its various bioactivities. In this study, ultrafiltration coupled with high-performance liquid chromatography-mass spectrometry was established for screening xanthine oxidase inhibitors from the jute leaves extract. Under the optimum screening conditions, three inhibitors were successfully screened and identified as chlorogenic acid, echinacoside, and isorhamnetin-rutinoside with UV and MS data. The fluorescent quenching analysis showed that three inhibitors quenched the fluorescence intensities of enzyme with different binding capacities. For further exploring the bioactivity of three inhibitors, the protective effects on hydrogen peroxide-induced oxidative stress was investigated using human normal liver cell (LO2), human gastric mucosal epithelial cell (GES-1), and human umbilical vein endothelial cell (HUVEC). As a result, they exhibited protective effects on three injured cells in dose-dependent manners without cytotoxicity. To evaluate the difference among different jute species obtained in our laboratories, the amounts of three compounds in ten samples were assessed and analyzed. The results showed that it could be divided into three groups. The jute leaves showed nutrient and medical potentials and deserved further research on pharmaceutical and biochemical utilization in future.

2011 ◽  
Vol 89 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Tao Chen ◽  
Zai-pei Guo ◽  
Xiao-yan Jiao ◽  
Yu-hong Zhang ◽  
Jing-yi Li ◽  
...  

Peoniflorin (PF), extracted from the root of Paeonia lactiflora Pall., has been reported to have anti-inflammation and antioxidant effects in several animal models. Herein, we investigated the protective effects of PF against hydrogen peroxide (H2O2)-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). HUVECs were treated by H2O2 (240 µmol/L) with or without PF. PF significantly increased the percent cell viability of HUVECs injured by H2O2 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. By flow cytometric analysis, PF markedly attenuated H2O2-induced apoptosis and intracellular reactive oxygen species production. In addition, PF also displayed a dose-dependent reduction of lactate dehydrogenase leakage, malondialdehyde formation, and caspase-3 proteolytic activities in H2O2-treated cells, which was accompanied with a restoration of the activities of endogenous antioxidants, including total superoxide dismutase and glutathione peroxidase. Finally, Western blot data revealed that H2O2 upregulated phosphorylation of extracellular signal-regulated kinase 1/2 in HUVECs, which was almost completely reversed by PF. Taken together, our data provide the first evidence that PF has a protective ability against oxidative damage in HUVECs. PF may be a candidate medicine for the treatment of vascular diseases associated with oxidative stress.


2021 ◽  
pp. 153537022110091
Author(s):  
Yanhong Si ◽  
Hua Tian ◽  
Bingqing Dong ◽  
Ying Zhang ◽  
Yuanyuan Wen ◽  
...  

Oxidative stress and inflammation are closely related to atherosclerotic cardiovascular disease. It is established that hydrogen has significant protective effects on many diseases as a potential antioxidative and anti-inflammatory agent. The purpose of this study is to evaluate the effect of hydrogen on unstable angina in vitro and in vivo. An atherosclerosis model in vitro was constructed by ox-LDL-induced injury of human umbilical vein endothelial cells and in vitro testing indicated hydrogen inhibited ox-LDL-induced oxidative stress and inflammatory response by down-regulating LOX-1/NF-kB signaling pathway. Subsequently, the attenuating effect of hydrogen-rich water intake on unstable angina was further confirmed in clinic. Forty hospitalized subjects with unstable angina were enrolled and consumed either 1000–1200 mL/d hydrogen-rich water or the same amount of placebo pure water in addition to conventional drugs for three months. Clinical analysis showed hydrogen-rich water intake relieved angina symptoms in unstable angina patients. Serum analysis showed that hydrogen-rich water addition resulted in more effective reductions of total-cholesterol, low-density lipoprotein-cholesterol, and apolipoprotein B levels compared with conventional treatment. These results support that hydrogen as adjuvant treatment has a beneficial effect on unstable angina.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mengmeng Wang ◽  
Qiang Li ◽  
Ying Zhang ◽  
Hao Liu

Total glucosides of peony (TGP) are used to treat rheumatoid arthritis and systemic lupus erythematosus. We explored the protective effects of TGP on cardiomyocyte oxidative stress and inflammation in the presence of hydrogen peroxide by focusing on mitochondrial dynamics and bioenergetics. Our study demonstrated that hydrogen peroxide significantly repressed cardiomyocyte viability and promoted cell apoptosis through induction of the mitochondrial death pathway. TGP treatment sustained cardiomyocyte viability, reduced cardiomyocyte apoptosis, and decreased inflammation and oxidative stress. Molecular investigation indicated that hydrogen peroxide caused mitochondrial dynamics disruption and bioenergetics reduction in cardiomyocytes, but this alteration could be normalized by TGP. We found that disruption of mitochondrial dynamics abolished the regulatory effects of TGP on mitochondrial bioenergetics; TGP modulated mitochondrial dynamics through the AMP-activated protein kinase (AMPK) pathway; and inhibition of AMPK alleviated the protective effects of TGP on mitochondria. Our results showed that TGP treatment reduces cardiomyocyte oxidative stress and inflammation in the presence of hydrogen peroxide by correcting mitochondrial dynamics and enhancing mitochondrial bioenergetics. Additionally, the regulatory effects of TGP on mitochondrial function seem to be mediated through the AMPK pathway. These findings are promising for myocardial injury in patients with rheumatoid arthritis and systemic lupus erythematosus.


2016 ◽  
Vol 17 (9) ◽  
pp. 692-702 ◽  
Author(s):  
Yun-zhi Ling ◽  
Xiao-hong Li ◽  
Li Yu ◽  
Ye Zhang ◽  
Qi-sheng Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document