Comparison of Turbulence Models for Single Sphere Simulation Study Under Supercritical Fluid Condition

2017 ◽  
Vol 12 (4) ◽  
Author(s):  
J. Malang ◽  
P. Kumar ◽  
A. Saptoro ◽  
M. O. Tade

AbstractIn this paper, the comparison of turbulence models for fluid flow past single sphere under supercritical conditions is reported. Firstly, Dixon et al.’s models [1], which are under non-supercritical conditions, were used as benchmarks to validate the simulated results. Two turbulence models namely RNGk-εand SSTk-ωmodels parameters were fine-tuned accordingly in order to obtain almost comparable results generated by Dixon et al.’s models [1]. The simulation works were then extended to simulate flow of supercritical carbon dioxide. The second part of this paper, therefore, presents a comparative study of the turbulence models i. e. standardk-ε, RNGk-ε, realizablek-εand SSTk-ωmodels. This study emphasises on the predictions and evaluations of the velocity profiles at different flow regimes namely recirculation, recovery and near-wake. Simulations were carried out to determine the velocity profiles at subcritical and supercritical conditions by varying Reynolds numbers (2000 and 20,000), pressures (65 and 80 bar) and temperatures (283.15 and 308.15K). Simulation results indicate that the predicted results are consistent with the literature data. Interesting flow features were identified for all the simulations. The results of this study also reveal that the SSTk-ωturbulence model was able to better capture the flow characteristics near-wake of the sphere.

Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array have been studied using hot wire anemometry with both single and x-wire probes at array Reynolds numbers of 3000; 10,000; and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3-D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing in Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well resolved 3-D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near wall methodology.


2005 ◽  
Vol 128 (1) ◽  
pp. 71-81 ◽  
Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array has been studied using hot wire anemometry with both single- and x-wire probes at array Reynolds numbers of 3000, 10,000, and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond, laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well-resolved 3D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near-wall methodology.


Author(s):  
Mehran Masoumifar ◽  
Suyash Verma ◽  
Arman Hemmati

Abstract This study evaluates how Reynolds-Averaged-Navier-Stokes (RANS) models perform in simulating the characteristics of mean three-dimensional perturbed flows in pipes with targeted wall-shapes. Capturing such flow features using turbulence models is still challenging at high Reynolds numbers. The principal objective of this investigation is to evaluate which of the well-established RANS models can best predict the flow response and recovery characteristics in perturbed pipes at moderate and high Reynolds numbers (10000-158000). First, the flow profiles at various axial locations are compared between simulations and experiments. This is followed by assessing the well-known mean pipeflow scaling relations. The good agreement between our computationally predicted data using Standard k-epsilon model and those of experiments indicated that this model can accurately capture the pipeflow characteristics in response to introduced perturbation with smooth sinusoidal axial variations.


2021 ◽  
Vol 406 ◽  
pp. 133-148
Author(s):  
El Amin Azzouz ◽  
Samir Houat ◽  
Ahmed Zineddine Dellil

In this paper, the case of the steady two-dimensional flow in a two-sided lid-driven square cavity is numerically investigated by the finite volume method (FVM). The flow motion is due to the top and bottom horizontal walls sliding symmetrically in the opposite direction with equal velocities, UT and UB, obtained through three respective Reynolds numbers, Re1,2=10000, 15000, and 20000. Due to the lack of availability of experimental results in this Reynolds number margin for this type of flow, the problem is first examined by considering that the flow is turbulent with the inclusion of four commonly used RANS turbulence models: Omega RSM, SST k-ω, RNG k-ε and Spalart-Allmaras (SA). Next, the regime is considered being laminar in the same range of Reynolds numbers. A systematic evaluation of the flow characteristics is performed in terms of stream-function contour, velocity profiles, and secondary vortices depth. Examination of the calculation results reveals the existence of a great similarity of the predicted flow structures between the Omega RSM model and those from the laminar flow assumption. On the other hand, the computed flow with the SST k-ω model, the RNG k-ε model, and the SA model reveals a remarkable under-prediction which appears clearly in the size and number of secondary vortices in the near-wall regions. Various benchmarking results are presented in this study.


2001 ◽  
Author(s):  
M. Kawaji ◽  
P. M.-Y. Chung ◽  
A. Kawahara

Abstract This paper presents a review of the flow characteristics in microchannels and our own flow visualization work using a photochromic dye activation technique. The review reveals differences in flow behaviour between micro- and macro-channels, and the need to measure instantaneous velocity profiles to explain these differences. In the experiment, de-ionized water containing a photochromic dye was pumped through a square capillary tube with inner dimensions of 96 μm × 96 μm to yield a Reynolds number of 0.1. A pulsed ultraviolet laser beam was used to create dye traces in the flowing liquid, and images of the traces were recorded with a video camera. Friction factor in laminar flow was also determined from pressure drop measurements at several Reynolds numbers using tap water. The experimental results showed the flow in intermediate-sized microchannels at low Reynolds numbers to still conform to conventional fluid mechanics theory, possibly with slight deviation. The success in obtaining quantitative results with this approach holds promise for further studies of flows in microchannels with smaller diameters.


1983 ◽  
Vol 105 (1) ◽  
pp. 48-55 ◽  
Author(s):  
E. M. Sparrow ◽  
R. F. Prieto

Wind tunnel experiments were performed to determine heat transfer coefficients and fluid flow patterns for two contacting spheres. The experiments were carried out at three different angles of attack and for Reynolds numbers in the range from 4000 to 26,000. Three heat transfer conditions were considered: (a) both spheres thermally active, (b) forwardmost sphere thermally active and rearmost sphere adiabatic, and (c) forwardmost sphere adiabatic and rearmost sphere thermally active. Complementary experiments for a single sphere, encompassing the same parameter ranges, yielded baseline information for comparison with the two-sphere results. It was found that the largest effects of the sphere-to-sphere interaction on the heat transfer occurred when the two spheres were in line. At this orientation and for higher Reynolds numbers in the investigated range, there was substantial enhancement of the heat transfer with respect to that for the single sphere. At the other angles of attack, there was lesser enhancement. The visualization studies revealed such key fluid flow features as the reattachment of the separated flow from the first sphere on the second, the presence of strong recirculations, and the delay of separation due to pressure-driven transverse flows.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eslam Ezzatneshan

Purpose Numerical simulations are performed for studying the vorticity dynamics of a dipole colliding with the wall in a bounded flow and the wake structure and separated flow properties past a circular cylinder at the values of Reynolds numbers. Design/methodology/approach The near wake statistics of separated fluid flows are investigated by using the lattice Boltzmann method (LBM) in a two-dimensional framework. A multi-block technique is applied to accurately resolve the flow characteristics by the grid refinement near the wall and preserve the stability of the numerical solution at relatively high Reynolds numbers. Findings The results show that the rolling-up of the boundary layer occurs due to the shear-layer instabilities near the surface which causes a boundary layer detachment from the wall and consequently leads to the formation of small-scale vortices. These shear-layer vortices shed at higher frequencies than the large-scale Strouhal vortices which result in small-scale high-frequency fluctuations in the velocity field in the very near wake. The present study also demonstrates that the efficiency of the multi-block LBM used for predicting the statistical features of flow problems is comparable with the solvers based on the Navier-Stokes equations. Practical implications Studying the separated flow characteristics in aerospace applications. Originality/value Applying a multi-block lattice Boltzmann method (LBM) for simulation of separated fluid flows at high-Reynolds numbers. Studying of the near wake statistics of unsteady separated fluid flows using the multi-block LBM. Comparison of flow characteristics obtained based on the LBM with those of reported based on the Navier-Stokes equations.


2019 ◽  
Author(s):  
Yasin Kaan İlter ◽  
Uğur Oral Ünal

Abstract Fully turbulent channel flow is a very common and effective way to investigate the boundary layer flow over the flat plates. Mean flow characteristics of the channel flow can be predicted using steady Reynolds Averaged Navier-Stokes (RANS) simulations although the turbulent flow has an unsteady nature. The objective of the present study is to evaluate the predictive capability of the turbulence models, which are based on RANS decomposition, in channel flow involving smooth surfaces. The study covers the application of the Reynolds-stress based second-moment turbulence closure model and the most preferred linear eddy viscosity models to determine the mean flow characteristics. The turbulence properties were compared with the DNS data obtained from the open literature. Also, an iterative study was performed for the fine-tuning of the coefficients appearing in the Reynolds-stress turbulence model. A tuned version of the Reynolds-stress model for two different frictional Reynolds numbers (Reτ) of 180 and 590 is presented. These studies will form a basis for further computations on the channel flow with a higher Reynolds number range and different channel sections. They will also serve as the initial steps for the future experimental and computational studies that will focus on the understanding of the flow mechanism over the dimpled surfaces at Reynolds numbers (based on half channel height and mean bulk velocity) up to 2.105.


Author(s):  
A. Khalatov ◽  
A. Byerley ◽  
D. Ochoa ◽  
Seong-Ki Min

A comprehensive experimental study has been performed in the U.S. Air Force Academy water tunnel to obtain a better understanding of the complicated flow patterns in shallow dimple configurations (h/D ≤ 0.1), including single cylindrical and spherical dimples, as well as single spanwise rows of dimples. The flow patterns, in-dimple separation zone extent, and bulk flow oscillation frequencies have been measured at low Reynolds number conditions. Three different single dimples and two single rows of dimples have been tested over a range of Reynolds numbers ReD of 3,170 to 23,590 including laminar and turbulent flow patterns downstream of a dimple. To visualize the fine flow features, five different colors of dye were injected through five cylindrical ports machined at locations upstream and inside the dimples. The measured results revealed unsteady and three-dimensional flow features inside and downstream of the dimple. The Reynolds number, dimple shape and the presence of adjacent dimples all play important roles in determining the nature of the flow pattern formation. Some preliminary conclusions regarding the laminar-turbulent flow transition after a dimple are presented.


Author(s):  
Hamid Rahman ◽  
Waqas Sarwar Abbasi ◽  
Shams-ul-Islam ◽  
Raees Khan ◽  
Muhammad Uzair Khan

This study focuses on the characteristics of flow past three side-by-side rectangular cylinders under the effect of aspect ratios (AR) and Reynolds numbers (Re) at two different gap ratios ([Formula: see text]) using the lattice Boltzmann method. For this purpose, AR is varied in the range of 0.25–4, the Re values are 100, 140 and 180 and the two different values of [Formula: see text] taken into account are [Formula: see text] and 3. The results are presented in the form of vorticity contours, temporal histories of drag and lift coefficients and power spectrum of lift coefficients. Also, the variation of physical parameters like mean drag coefficient, Strouhal number and the root-mean-square values of drag and lift coefficients with Re and AR is presented for [Formula: see text] and 3. The current numerical computations yield that for both gap ratios and all Re, there exist four different flow regimes depending on AR: (a) steady flow, (b) modulated flow, (c) symmetric flow and (d) periodic flow. At narrow gap ratios, the jet flow emerging within the gaps of cylinders altered the flow structures and fluid forces abruptly. The aspect ratio is found to have more influence on the flow characteristics of cylinders as compared to the Reynolds numbers at large gap ratios.


Sign in / Sign up

Export Citation Format

Share Document