scholarly journals Computationally Efficient Chaotic Spreading Sequence Selection for Asynchronous DS-CDMA

2017 ◽  
Vol 13 (1) ◽  
pp. 75-80
Author(s):  
Anna Litviņenko ◽  
Artūrs Āboltiņš

Abstract The choice of the spreading sequence for asynchronous direct-sequence code-division multiple-access (DS-CDMA) systems plays a crucial role for the mitigation of multiple-access interference. Considering the rich dynamics of chaotic sequences, their use for spreading allows overcoming the limitations of the classical spreading sequences. However, to ensure low cross-correlation between the sequences, careful selection must be performed. This paper presents a novel exhaustive search algorithm, which allows finding sets of chaotic spreading sequences of required length with a particularly low mutual cross-correlation. The efficiency of the search is verified by simulations, which show a significant advantage compared to non-selected chaotic sequences. Moreover, the impact of sequence length on the efficiency of the selection is studied.

2017 ◽  
Vol 21 (1) ◽  
pp. 34
Author(s):  
A. Litvinenko ◽  
E. Bekeris

This paper presents a statistical analysis of multiple access interference (MAI) in Direct Sequence Code Division Multiple Access (DS-CDMA) communication systems based on different types of chaotic spreading sequences. The probability distribution of the interference in a system with K users causing the MAI is studied using MATLAB simulation. For chaotic spreading sequence generation six different 1-D chaotic maps are used: modified Bernoulli, modified Tent, Gauss, Sine-Circle, Cubic and Pinchers map. A brief statistical analysis of the cross-correlation properties of the chaotic sequences generated by the aforementioned maps is also presented.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 539
Author(s):  
Saleh Seyedzadeh ◽  
Andrew Agapiou ◽  
Majid Moghaddasi ◽  
Milan Dado ◽  
Ivan Glesk

The growing demand for extensive and reliable structural health monitoring resulted in the development of advanced optical sensing systems (OSS) that in conjunction with wireless optical networks (WON) are capable of extending the reach of optical sensing to places where fibre provision is not feasible. To support this effort, the paper proposes a new type of a variable weight code called multiweight zero cross-correlation (MW-ZCC) code for its application in wireless optical networks based optical code division multiple access (WON-OCDMA). The code provides improved quality of service (QoS) and better support for simultaneous transmission of video surveillance, comms and sensor data by reducing the impact of multiple access interference (MAI). The MW-ZCC code’s power of two code-weight properties provide enhanced support for the needed service differentiation provisioning. The performance of this novel code has been studied by simulations. This investigation revealed that for a minimum allowable bit error rate of 10−3, 10−9 and 10−12 when supporting triple-play services (sensing, datacomms and video surveillance, respectively), the proposed WON-OCDMA using MW-ZCC codes could support up to 32 simultaneous services over transmission distances up to 32 km in the presence of moderate atmospheric turbulence.


Author(s):  
Mouad Addad ◽  
Ali Djebbari

In order to meet the demand of high data rate transmission with good quality maintained, the multi-carrier code division multiple access (MC-CDMA) technology is considered for the next generation wireless communication systems. However, their high crest factor (CF) is one of the major drawbacks of multi-carrier transmission systems. Thus, CF reduction is one of the most important research areas in MC-CDMA systems. In addition, asynchronous MC-CDMA suffers from the effect of multiple access interference (MAI), caused by all users active in the system. Degradation of the system’s bit error rate (BER) caused by MAI must be taken into consideration as well. The aim of this paper is to provide a comparative study on the enhancement of performance of an MC-CDMA system. The spreading sequences used in CDMA play an important role in CF and interference reduction. Hence, spreading sequences should be selected to simultaneously ensure low CF and low BER values. Therefore, the effect that correlation properties of sequences exert on CF values is investigated in this study. Furthermore, a numerical BER evaluation, as a function of the signal-to-noise ratio (SNR) and the number of users, is provided. The results obtained indicate that a trade-off between the two criteria is necessary to ensure good performance. It was concluded that zero correlation zone (ZCZ) sequences are the most suitable spreading sequences as far as the satisfaction of the above criteria is concerned.


2003 ◽  
Vol 13 (08) ◽  
pp. 2353-2359 ◽  
Author(s):  
Francisco Argüello ◽  
Manuel Bugallo ◽  
Juan López

Recently, there has been a good deal of interest in the use of chaotic signals for direct sequence code division multiple access (DS-CDMA) communication systems. The capacity of DS-CDMA systems is interference-limited, and can therefore be increased by techniques that suppress interference. This letter is devoted to the evaluation of the impact of blind multiuser detection techniques on chaos based DS-CDMA systems. Blind receivers can suppress multiple access interference and do not require knowledge of the code sequences and propagation channels of the interference. We demonstrate that, for chaotic sequence-based communications, blind multiuser receivers significantly improve the BER with respect to single-user receivers, and that their use is practically essential with a high number of users.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Naif Alsowaidi ◽  
Tawfig Eltaif ◽  
Mohd Ridzuan Mokhtar

AbstractThis paper presents a comprehensive review of successive interference cancellation (SIC) scheme using pulse position modulation (PPM) for optical code division multiple access (OCDMA) systems. SIC scheme focuses on high-intensity signal, which will be selected after all users were detected, and then it will be subtracted from the overall received signal, hence, generating a new received signal. This process continues till all users eliminated one by one have been detected. It is shown that the random location of the sequences due to PPM encoding can reduce the probability of concentrated buildup of the pulse overlap in any one-slot time, and support SIC to easily remove the effect of the strongest signal at each stage of the cancellation process. The system bit error rate (BER) performance with modified quadratic congruence (MQC) codes used as signature sequence has been investigated. A detailed theoretical analysis of proposed system taking into account the impact of imperfect interference cancellation, the loss produced from the splitting during encoding and decoding, the channel loss and multiple access interference is presented. Results show that under average effective power constraint optical CDMA system using SIC scheme with


2019 ◽  
Vol 40 (1) ◽  
pp. 83-92 ◽  
Author(s):  
S. Driz ◽  
A. Djebbari

Abstract In this paper, we investigate the impact of modulation index on the performances of SCM SAC-OCDMA system. Knowing that zero cross-correlation (ZCC) codes remove the effect of multiple access interference and of phase-induced intensity noise, SCM SAC-OCDM has been investigated using ZCC codes with two types of direct detection, one and all wavelengths of the code. In this hybrid system, the SNR depends on the modulation index for a given effective power of broadband source. In order to maximize the SNR, the optimum values of the modulation index, for different number of subcarriers, are determined analytically for two types of detection. The performance of the optimized system is evaluated based up on BER. The obtained numerical results show that, by optimizing the modulation index, the number of subcarriers (number of active users per ZCC code) is increased and the performance is significantly improved.


2013 ◽  
Vol 37 (3) ◽  
pp. 415-426
Author(s):  
Chih-Ta Yen ◽  
Ing-Jr Ding ◽  
Cheng-Mu Tsai

An optical code-division multiple-access (OCDMA) network for radio-over-fiber (RoF) transmissions was proposed. The network encoders/decoders (codecs) were structured based on arrayed-waveguide-grating (AWG) routers coded using modified prime codes (MPCs). In the proposed system, the lower in-phase cross correlation could reduce the beating noise, and in the proposed study, its performance was compared with that of a conventional system that uses M-sequence and Walsh-Hadamard codes. The performance of both systems was numerically evaluated by analyzing the effect of phase-induced-intensity noise (PIIN). The results showed that the new code families that had lower cross correlation can suppress the intensity of the noise and effectively cancel out the multiple-access interference (MAI) in balanced detection processes, which improved system performance. By using the proposed MPC-coded OCDMA ROF network codecs, each network required only two AWG routers to accomplish the spectral coding of radio base stations (RBSs) and the decoding of control stations (CSs), resulting in a simple and low-cost system. Therefore, it is possible to produce interference- and crosstalk-free optical CDMA systems for RoF transmissions.


2014 ◽  
Vol 699 ◽  
pp. 931-936
Author(s):  
Che Beson Mohd Rashidi ◽  
S.A. Aljunid ◽  
F. Ghani ◽  
H.A. Fadhil ◽  
M.S. Anuar

This paper presents a new Alleviation Interference Scheme (AIS) for Spectral Amplitude Coding (SAC) - Optical Code Division Multiple Access (OCDMA) coding approaches. The AIS SAC-OCDMA systems is demonstrated by utilizing the Flexible Cross Correlation (FCC) code. The FCC code has advantages, such as flexible cross-correlation property at any given number of users and weights, as well as effectively reduces the impacts of phase induced intensity noise (PIIN) and multiple-access interference (MAI). The results indicated good performance whereas the FCC code offers 100%, 207% and 471% percentage larger number of active users compared to MDW W=4, Hadamard and MFH W=8 codes, respectively. Finally, the FCC code has low receive power Psr = -18 dBm which is expected to be more significant for future SAC-OCDMA coding systems.


In a code division multiple access (CDMA) system, multiple access interference (MAI) and Inter-symbol interference (ISI) appears if generated spreading codes are not maintained orthogonally and the communication channel is taken as multi-path communication channel. When generated spreading codes are multi-path spread and then channel delay occurs, it shows that ortho-gonality of the spreading codes is not maintained. The effect of MAI can be mitigated by maintaining low cross-correlation values as much as low between the large numbers of spreading codes. The code division multiple technique spreading codes must maintain absolutely impulsive autocorrelation at origin and very low cross correlation other than origin to avoid false synchronisation. i.e autocorrelation must be maximum at origin and cross correlation must be minimum at non origin point. In this paper, we propose multi-objective Genetic Algorithm approach –Genetic Algorithm-II (NSGA-II) to reduce the out-of-phase average mean-square aperiodic autocorrelation and average mean-square aperiodic cross-correlation value of randomly initialized binary spreading code set.


2018 ◽  
Vol 39 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Manisha Bharti ◽  
Manoj Kumar ◽  
Ajay K. Sharma

AbstractThe main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.


Sign in / Sign up

Export Citation Format

Share Document