scholarly journals Eco-Investments - Life Cycle Assessment of Different Scenarios of Biomass Combustion

2018 ◽  
Vol 25 (2) ◽  
pp. 307-322 ◽  
Author(s):  
Tomasz Nitkiewicz ◽  
Agnieszka Ociepa-Kubicka

Abstract The article presents the results of life cycle assessment of different scenarios of biomass use to produce energy in a selected company. The study is made on the case of Lesaffre Polska S.A. and its facility in Wolczyn which is one of the most modern biomass plants in Central Europe. The company is one of the leaders of using the environmental criteria in its strategic decision-making. Its goal is to avoid any waste and to form its own circular business system. One of its recent investments is a biomass fired steam boiler that uses agricultural and woody biomass to produce energy. Previously, biomass was sold to power plant and co-fired with coal. The scope of the paper is to assess the actual change in the environmental impact of biomass use in the Wolczyn facility. For that purpose, the life cycle assessment is used with the ReCiPe endpoint indicator. The assessment is based on the comparison of two scenarios: one assuming the biomass combustion in a new boiler, and the second one, assuming co-firing biomass with coal. The results of the study show that the investment is making a significant difference as far as the overall environmental impact is. Through avoiding the co-firing related emissions the company makes a big step ahead towards the decrease of their environmental impacts. The analysis shows that the significant impact in the co-firing scenario is posed in such categories as fossil depletion, climate change with impacts on human health and on ecosystems, particulate matter formation and agricultural land occupation. In the biomass combustion scenario, the above categories are complemented with metal depletion, natural land transformation, urban land occupation and human toxicity categories but with 4 times decrease of the overall impact. The study also shows that the change of the combustion system makes the most significant difference, while all the other factors, like biomass cultivation and processing, biomass transport have much lesser impact.

2021 ◽  
Vol 25 (1) ◽  
pp. 71-111
Author(s):  
Shadia Moazzem ◽  
Enda Crossin ◽  
Fugen Daver ◽  
Lijing Wang

Abstract This study presents the environmental impact of apparel consumption in Australia using life cycle assessment methodology according to ISO14040/14044:2006. Available published references, the Ecoinvent v3 dataset, the Australian life cycle assessment dataset and apparel country-wise import data with the breakdown of apparel type and fibre type were used in this study. The environmental impact assessment results of the functional unit were scaled up to the total apparel consumption. The impact results were also normalized on a per-capita/year basis. The Total Climate Change Potential (CCP) impact from apparel consumption of 2015 was estimated to be 16 607 028 tonnes CO2eq and 698.07 kg CO2eq/per capita-year. This study also assessed the impact of acidification potential (AP), water depletion (WD), abiotic resource depletion potential (ADP) - fossil fuel and agricultural land occupation (ALO) using the same methodology. The market volume of cotton apparel in Australia is 53.97 %, which accounts for 45 %, 96 %, 40 %, 46 % and 79 % of total CCP, WD, ADP, AP and ALO impact, respectively. Apparel broad categories of cotton shirt, cotton trouser, polyester shirt and polyester trouser have a high volume in the apparel market as well as a high environmental impact contribution. These high-volume apparel products can be included in the prioritization list to reduce environmental impact throughout the apparel supply chain. It was estimated that from 2010 to 2018 the per capita apparel consumption and corresponding impact increased by 24 %.


2015 ◽  
Vol 1 (3) ◽  
pp. 195-214 ◽  
Author(s):  
M. Roffeis ◽  
B. Muys ◽  
J. Almeida ◽  
E. Mathijs ◽  
W.M.J. Achten ◽  
...  

The largest portion of a product’s environmental impacts and costs of manufacturing and use results from decisions taken in the conceptual design phase long before its market entry. To foster sustainable production patterns, applying life cycle assessment in the early product development stage is gaining importance. Following recent scientific studies on using dipteran fly species for waste management, this paper presents an assessment of two insect-based manure treatment systems. Considering the necessity of manure treatment in regions with concentrated animal operations, reducing excess manure volumes with the means of insects presents a potentially convenient method to combine waste reduction and nutrient recovery. An analytical comparison of rearing houseflies on fresh and pre-treated pig manure is reported with reference to agricultural land occupation, water and fossil depletion potential. Based on ex-ante modelled industrial scale rearing systems, the driving factors of performance and environmentally sensitive aspects of the rearing process have been assessed. Expressed per kg manure dry matter reduction, the estimated agricultural land occupation varied between 1.4 and 2.7 m2yr, fossil depletion potential ranged from 1.9 to 3.4 kgoil eq and the obtained water depletion potential was calculated from 36.4 to 65.6 m3. System improvement potential was identified for heating related energy usage and water consumption. The geographical context and the utility of the co-products, i.e. residue substrates and insect products, were determined as influential variables to the application potential of this novel manure treatment concept. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such a system and provide guidance for future research and development activities.


2021 ◽  
Vol 13 (19) ◽  
pp. 11108
Author(s):  
Elio Romano ◽  
Pasquale De Palo ◽  
Flavio Tidona ◽  
Aristide Maggiolino ◽  
Andrea Bragaglio

Life cycle assessment (LCA) was performed in dairy buffalo farms representative of Southern Italian farming systems, similar due to several characteristics, with the exception of wheat production. This work evaluated the impacts derived from this management choice, comparing farms with wheat crop (WWC) or not (NWC). In agreement with the literature, economic allocation was chosen as a useful strategy to attribute equivalents to by-products, i.e., culled animals; the same criterion was also adopted to assign pollutants to wheat grain, limited to WWC farms. Environmental impacts in terms of Global Warming Potential (GWP, kg CO2 eq), Acidification Potential (AC, g SO2 eq), Eutrophication Potential (EU, g PO43-eq), Agricultural Land Occupation (ALO, m2y) and Water Depletion (WD, m3) were estimated. The production of wheat crop significantly affected (p < 0.05) the Agricultural Land Occupation (ALO) category as WWC farms need adequate land. WWC farms could allow a significant reduction in eutrophication (EU) compared to NWC farms (p < 0.05).


2017 ◽  
Vol 8 (1) ◽  
pp. 57-66
Author(s):  
Tomasz Nitkiewicz ◽  
Agnieszka Ociepa-Kubicka

Abstract The article presents the activities of selected company - biomass manufacturer and user - with regard to environmental impact of biomass supply chain solutions. The biomass production facility of Biomass User Company is one of the most modern plant in Central Europe. It uses wooden and agricultural biomass to produce heat in biomass-fired steam boiler. The objective of the paper is to investigate the environmental impact with the use of life cycle assessment method. In our study, we define different scenarios for biomass transportation, concerning its supply as well as distribution. Life cycle assessment method is used to estimate environmental impact and to perform sensitivity analysis on transport modes, fuel mix structure and destination of self-cropped biomass. LCA ReCiPe endpoint indicator is used to measure environmental performance. As the results show, transport efforts are not significant factor while environmental impacts are concerned but are rather impact intensive type of activity and should be addressed with company environmental policies.


2021 ◽  
Vol 13 (9) ◽  
pp. 4815
Author(s):  
Lucas A. C. Esteves ◽  
Alessandra N. T. R. Monteiro ◽  
Natália Y. Sitanaka ◽  
Paula C. Oliveira ◽  
Leandro D. Castilha ◽  
...  

Two experiments were performed to determine the digestibility of diets with crude protein (CP) reduction supplemented with amino acids (18.15; 17.15; 16.15 and 15.15%) to growing pigs (30–50 kg), to assess the use of nutrients and account for the manure excretion, and to evaluate the performance, backfat thickness, Longissimus lumborum depth, and plasma urea, aiming to evaluate the environmental impact through life cycle assessment (LCA); for the first time in Brazil interacting experiments were developed to evaluate the CP reduction and LCA. The CP reduction resulted in greater daily weight gain (p = 0.011), final weight (p = 0.020), better use of N and P, through the greater N and P retained (p = 0.003 and p = 0.017, respectively). There was a linear reduction in acidification potential (p = 0.015), eutrophication potential (p = 0.001), and land occupation (p = 0.005) when dietary CP decreased from 18.15 to 15.15%. The reduction in CP and supplementation of amino acids in diets for growing pigs (30–50 kg) improved final and daily weight gain. Through LCA, and performance and metabolism data, it was concluded that for the acidification, eutrophication and land occupation categories, impacts were reduced as the protein concentration was reduced.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


Sign in / Sign up

Export Citation Format

Share Document