scholarly journals Influence of composite structure design on the ablation performance of ethylene propylene diene monomer composites

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 151-159
Author(s):  
Jingwen Ren ◽  
Yan Qin ◽  
Zhengwei Peng ◽  
Zhuangzhuang Li

Abstract By introducing functional fillers into the ethylene propylene diene monomer matrix, the anti-ablation, thermal insulation, and adhesive layer were prepared, respectively. We have studied the mechanical properties, ablation properties, thermal insulation properties, and bonding properties of different composite structures after design and analyzed the ceramic mechanism. The results showed that the content of ceramic fillers improved the thermal stability and ablation properties of anti-ablation layer composites. The formation of liquid structure can fill the hole defects and ablation pit. The foaming agent improved thermal insulation properties of the thermal insulation layer, and the strength of the bonding layer has been greatly improved. The design of the composite structure can not only reduce the density but also have an excellent thermal insulation effect. And as the thickness of the heat insulation layer increases, the heat blocking effect becomes more excellent.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 636
Author(s):  
Xiaohan Wang ◽  
Dongxu Li

Mimicking natural structures has been highly pursued recently in composite structure design to break the bottlenecks in the mechanical properties of the traditional structures. Bone has a remarkable comprehensive performance of strength, stiffness and toughness, due to the intricate hierarchical microstructures and the sacrificial bonds within the organic components. Inspired by the strengthening and toughening mechanisms of cortical bone, a new biomimetic composite structure, with a designed progressive breakable internal construction mimicking the sacrificial bond, is proposed in this paper. Combining the bio-composite staggered plate structure with the sacrificial bond-mimicking construction, our new structure can realize tunable stiffness and superior toughness. We established the constitutive model of the representative unit cell of our new structure, and investigated its mechanical properties through theoretical analysis, as well as finite element modeling (FEM) and simulation. Two theoretical relations, respectively describing the elastic modulus decline ratio and the unit cell toughness promotion, are derived as functions of the geometrical parameters and the material parameters, and validated by simulation. We hope that this work can lay the foundation for the stiffness tunable and high toughness biomimetic composite structure design, and provide new ideas for the development of sacrificial bond-mimicking strategies in bio-inspired composite structures.


2007 ◽  
Vol 334-335 ◽  
pp. 453-456
Author(s):  
Wen Yuan Cheng ◽  
De Gang Cui ◽  
Yan Chang ◽  
Xiang Hui Xie

In the traditional iterative design process for composite structures, it is difficult to achieve an optimal solution even though a great effort is made. A genetic optimization system based on grid technology offers an automatic and efficient approach for composite structure redesign and optimization. A genetic algorithm system, which integrates Genetic Algorithm Optimization (GAO) software and a Finite Element Analysis (FEA) based commercial package, has been developed as a tool for composite structure design and analysis. The GAO is capable of tailoring large number of composite design variables and taking the time-consuming FEA results to calculate objective function value and conduct optimization in high accuracy. By operating the system employing the Grid technology and Artificial Neural Network (ANN) method, significant time saving in numerical analysis can be achieved. A user friendly interface has also been built in the system. In the paper, aeroelastic tailoring of a composite wing has been taken as a numerical example to demonstrate the optimization approach. The numerical results show that an optimal design has been achieved to meet the design requirement.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1685
Author(s):  
Hang Zhang ◽  
Zihao Chen ◽  
Yaoyao He ◽  
Xin Guo ◽  
Qingyu Li ◽  
...  

The conventional method of preparing metal–ceramic composite structures causes delamination and cracking defects due to differences in the composite structures’ properties, such as the coefficient of thermal expansion between metal and ceramic materials. Laser-directed energy deposition (LDED) technology has a unique advantage in that the composition of the materials can be changed during the forming process. This technique can overcome existing problems by forming composite structures. In this study, a multilayer composite structure was prepared using LDED technology, and different materials were deposited with their own appropriate process parameters. A layer of Al2O3 ceramic was deposited first, and then three layers of a NbMoTa multi-principal element alloy (MPEA) were deposited as a single composite structural unit. A specimen of the NbMoTa–Al2O3 multilayer composite structure, composed of multiple composite structural units, was formed on the upper surface of a φ20 mm × 60 mm cylinder. The wear resistance was improved by 55% compared to the NbMoTa. The resistivity was 1.55 × 10−5 Ω × m in the parallel forming direction and 1.29 × 10−7 Ω × m in the vertical forming direction. A new, electrically anisotropic material was successfully obtained, and this study provides experimental methods and data for the preparation of smart materials and new sensors.


Sign in / Sign up

Export Citation Format

Share Document