Flocculation characteristics of organo-modified clay particles in poly(L-lactide) / montmorillonite hybrid systems

e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Pham Hoai Nam ◽  
Atsuhiro Fujimori ◽  
Toru Masuko

Abstract The stacking characteristics of organo-modified montmorillonite particles in poly(L-lactide) / clay hybrids have been investigated through FT-IR measurements and transmission electron microscopy. The clay particles tend to flocculate with hydrogen bonding among the hydroxyl groups of the surfactant, those located at the edge of clay particles, and/or those existing at the ends of polylactide chains.

2011 ◽  
Vol 239-242 ◽  
pp. 2839-2842
Author(s):  
Hong Mei Mu ◽  
Peng Fei ◽  
Bi Tao Su ◽  
Zi Qiang Lei

A series of Fe3+-dopped polyaniline (Fe3+/PANI) nanomaterials with different morphologies and a higher conductivity were successfully synthesized using a simple and static interfacial polymerization by using FeCl3 as both oxidant catalyst and dopant. The effect of surfactants CTAB and SDS and the concentration of FeCl3 on the morphology and conductivity of Fe3+/PANI nanomaterial were investigated. The samples were characterized by Transmission Electron Microscopy (TEM), SDY-4 probes conductivity meter, X-ray Diffractometry (XRD), Energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy techniques. TEM’s results showed that their morphologies changed with the type of the surfactant and the concentration of FeCl3. Introducing surfactants CTAB and SDS into Fe3+/PANI remarkably improved the conductivity of the material. The conductivities of CTAB/Fe3+/PANI and SDS /Fe3+/PANI nanomaterials were respectively about 4.8×10-2 and 1.3×10-2 S/cm while the conductivity of Fe3+/PANI was found to be 1.5×10-4 S/cm. The different morphology and high conductivity may be ascribed to the mutual effects of the surfactant and oxidant.


2019 ◽  
Vol 11 (11) ◽  
pp. 1064-1070 ◽  
Author(s):  
Nkosinathi G. Dlamini ◽  
Albertus K. Basson ◽  
V. S. R. Rajasekhar Pullabhotla

Bioflocculant from Alcaligenis faecalis HCB2 was used in the eco-friendly synthesis of the copper nanoparticles. Nanoparticles were characterized using a scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, thermo gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). The transmission electron microscopy images showed close to spherical shapes with an average particle size of ∼53 nm. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of the Cu nanopartilces and also the other elements such as O, C, P, Ca, Cl, Na, K, Mg, and S originated from the bioflocculant. FT-IR results showed the presence of the –OH and –NH2 groups, aliphatic bonds, amide and Cu–O bonds. Powder X-ray diffraction peaks confirmed the presence of (111) and (220) planes of fcc structure at 2 of 33° and 47° respectively with no other impurity peaks.


2015 ◽  
Vol 1786 ◽  
pp. 57-63
Author(s):  
Vasuda Bhatia ◽  
Bhawana Singh ◽  
Vinod K. Jain

ABSTRACTNano-graphite oxide has been synthesized from graphite flakes using modified Hummer’s method. Fourier transform infrared (FT-IR) data, x-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed functionalization of the synthesised nano-graphitic platelets with oxygenated bonds. Using thermal embedding technique for the fabrication of self-assembled films, electrodes of nano-graphite oxide have been fabricated for enzyme free detection of cholesterol electrochemically. The electrodes provided a linear response for the enzyme less detection in the range of 50mg/dl to 500mg/dl with a correlation coefficient, R, of 0.99784 and sensitivity of 1.0587 µA/mg.


2021 ◽  
Author(s):  
Panagiotis M. Spatharas ◽  
Georgia I. Nasi ◽  
Paraskevi L. Tsiolaki ◽  
Marilena K. Theodoropoulou ◽  
Nikos C. Papandreou ◽  
...  

Abstract Background: Clusterin is a heterodimeric glycoprotein (α- and β-chain), which has been described as an extracellular molecular chaperone. In humans, clusterin is an amyloid associated protein, co-localizing with fibrillar deposits in Alzheimer’s disease. To clarify its implication in the disease, we provide evidence that clusterin has intrinsic amyloidogenic properties, which are intertwined with its inhibitory effect on amyloid-β fibril formation.Methods: Aggregation-prone regions of human clusterin were predicted by AMYLPRED. Synthetic peptide-analogues of each region underwent in vitro aggregation assays, namely, examination with transmission electron microscopy, X-Ray diffraction from oriented fibers, ATR FT-IR spectroscopy, and Congo Red birefringence assays. The same peptide-analogues were co-incubated with amyloid-β and their potential as inhibitors was tested with thioflavin T fluorescence emission measurements and transmission electron microscopy. Molecular dynamics simulations were performed to gain insight into the interaction between amyloid-β and the peptide-analogues.Results: Clusterin peptide-analogues form amyloid-like fibrils, as revealed by transmission electron microscopy. They can form fibers that give cross-β X-ray diffraction patterns and ATR FT-IR spectroscopy confirms the dominance of β-strand secondary structure. They also exhibit apple-green birefringence, when stained with Congo Red and examined between crossed polars of a polarizing light microscope. Furthermore, when amyloid-β is co-incubated with clusterin’s peptide analogues, it shows decreased thioflavin T fluorescence emission over time, while the formation of amyloid-β amyloid fibrils is diminished, as confirmed by transmission electron microscopy. The inhibitory effect of clusterin-peptide analogues on amyloid-β fibril formation was ascertained though molecular dynamics simulations. Conclusions: Clusterin has multiple aggregation-prone regions in its α-chain and these regions have a functional role in the inhibition of amyloid-β fibril formation.


Gels ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 5 ◽  
Author(s):  
Evelina Parisi ◽  
Ana Garcia ◽  
Domenico Marson ◽  
Paola Posocco ◽  
Silvia Marchesan

In this work, we present Thioflavin T fluorescence, transmission electron microscopy (TEM), circular dichroism (CD), Fourier-transformed infrared (FT-IR), and oscillatory rheometry studies applied to an antineoplastic drug, 5-fluorouracil (5-FU), embedded in a heterochiral tripeptide hydrogel to obtain a drug delivery supramolecular system. The release of 5-fluorouracil was monitored over time by reverse-phase high-performance liquid chromatography (HPLC) and its interaction with the tripeptide assemblies was probed by all-atom molecular dynamics simulations.


2012 ◽  
Vol 1483 ◽  
Author(s):  
M. Ugalde ◽  
E. Chavira ◽  
M. T. Ochoa-Lara ◽  
M. A. Canseco ◽  
E.A. Zaragoza-Contreras ◽  
...  

ABSTRACTIn this work, the synthesis of new hybrid material based on a poly (buthyl acrylate –co- vinyl formamide) copolymer using the emulsion polymerization and doped with Pd, is discussed. The copolymer structure was confirmed by FT-IR. Afterwards, Pd nanocrystals previously synthesized, resulting on a spherical shape of ~ 5 nm, as measured by High-resolution transmission electron microscopy (HR-TEM), were deposited on the structure of the organic material. The films were analyzed using AFM and Scanning electron microscopy (SEM), giving rise to a hybrid material that could be applied in areas such as nanolithography, catalysis, and sensors.


2013 ◽  
Vol 341-342 ◽  
pp. 13-17
Author(s):  
Xiao Yun Zhang ◽  
Hong Yan Qin ◽  
Xiu Xin Zheng ◽  
Shi Hu Yu ◽  
Wei Wu

CO2solid adsorbent was prepared through impregnating acrylonitrile (AN) modified monoethanolamine (MEA) into structurally disordered mesoporous silica (M) pore channel. Its structure was characterized by X-ray diffraction characterization (XRD), N2adsorption-desorption tests (BET), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The capacity of CO2adsorption and desorption were measured and evaluated by comparison with MEA-impregnated material. The results showed that the capacity of M-MN-50 reached up to 125.8 mg·g-1and could desorb completely at the temperature of 40 °C by vacuum with 2.6 KPa. The hybrid material exhibited satisfactory performance during 10 turnovers.


2010 ◽  
Vol 76 (22) ◽  
pp. 7598-7607 ◽  
Author(s):  
A. Alvarez-Ordóñez ◽  
M. Prieto

ABSTRACT The effect of exposure to acid (pH 2.5), alkaline (pH 11.0), heat (55°C), and oxidative (40 mM H2O2) lethal conditions on the ultrastructure and global chemical composition of Salmonella enterica serovar Typhimurium CECT 443 cells was studied using transmission electron microscopy and Fourier transform infrared spectroscopy (FT-IR) combined with multivariate statistical methods (hierarchical cluster analysis and factor analysis). Infrared spectra exhibited marked differences in the five spectral regions for all conditions tested compared to those of nontreated control cells, which suggests the existence of a complex bacterial stress response in which modifications in a wide variety of cellular compounds are involved. The visible spectral changes observed in all of the spectral regions, together with ultrastructural changes observed by transmission electron microscopy and data obtained from membrane integrity tests, indicate the existence of membrane damage or alterations in membrane composition after heat, acid, alkaline, and oxidative treatments. Results obtained in this study indicate the potential of FT-IR spectroscopy to discriminate between intact and injured bacterial cells and between treatment technologies, and they show the adequacy of this technique to study the molecular aspects of bacterial stress response.


2010 ◽  
Vol 10 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Kani Rauf ◽  
Anthony Hann ◽  
Chandra Wickramasinghe ◽  
Barry E. DiGregorio

AbstractParticles in the Carancas meteorite were examined by electron microscopy (transmission electron microscopy/scanning electron microscopy), energy dispersive analysis of X-rays (EDAX) and Fourier Transform Infrared spectroscopy. Scanning electron microscopical observations reveal that the particles of variable sizes have a stony appearance. Many of these particles show fractures in places, thus confirming an ealier observation that the meteorite was subjected to a high-velocity impact. The outer rim of many aggregates displays a mud crack-like texture. At high magifications, this texture shows ovoid and elongated features, which appear similar to microfossils found in other meteorites.As revealed by both scanning and transmission electron microscopy, some particles show three clearly marked zones, distinguishable by their differences in electron density and texture: a light zone, a dark zone and an intermediate zone. The EDAX analysis of these particles shows that the light zone is composed of silicates rich in Fe, Ni and S (the elements of troilite and pentlandite). The dark zone contains high concentrations of Mg and Si (the major elements of high-temperature minerals, such as forsterite, Mg2SiO4 and enstatite, MgSiO3) intermixed with carbonates and traces of Al, Ca and Na. The intermediate zone also contains high-temperature minerals and Fe-Ni rich silicates.The Carancas meteorite produces an infrared waveband showing prominent features of some carbonate species, amorphous and crystalline silicates, and olivine groups. Hydrated silicates and hydroxyl groups are less abundant, as shown by the presence of small humps between 2.5 and 8.0 μm.The abundance of high-temperature minerals and iron-rich metal confirms an earlier observation that the meteorite is an ordinary H4/5 chondrite. Some particles in the Carancas meteorite are found to have structural and chemical characteristics similar to those of the 81P/Wild 2 comet.


Sign in / Sign up

Export Citation Format

Share Document