scholarly journals Occurrences of Chert in Jurassic-Cretaceous Calciturbidites (SW Turkey)

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Murat Gül

AbstractThe Lycian Nappes, containing ophiolite and sedimentary rocks sequences, crop out in the southwest Turkey. The Tavas Nappe is a part of the Lycian Nappes. It includes the Lower Jurassic-Upper Cretaceous calciturbidites. Chert occurrences were observed in the lower part of this calciturbidite. These cherts can be classified on the basis of length, internal structure and host rock. Chert bands are 3.20-35.0min length and 7.0-35.0 cm thick. Chert lenses are 5.0-175.0 cm in length and 1.0-33.0 cm thick. According to its internal structure, granular chert (bladedlarge equitant quartz minerals replaced the big calcite mineral of fossil shell) and porcelanious chert (microcrystalline silica replaced micrite) have been separated. Cherts are generally associated with calcarenite-calcirudite, the others with calcilutite. Micritic calcite patches of cherts point out an uncompleted silicification. The source of silica was dominantly quartz-rich, older, basal rocks and to a lesser extent radiolarians. The coarse-grained calciturbidites act as a way for silica transportation. Some calcite veins (formed during transportation and emplacement of nappes) cut both calciturbidites and cherts. Thus, chert occurrences evolved before emplacement of nappes (the latest Cretaceous-Late Miocene period) during the epigenetic phase.

2021 ◽  
Author(s):  
Bojan Otoničar

The studied palaeokarst corresponds to an uplifted peripheral foreland bulge when Upper Cretaceous diagenetically immature eugenetic carbonates were subaerially exposed, karstified and subsequently overlain by upper Paleocene/lower Eocene palustrine limestone. Among the subsurface paleokarstic features, both vadose and phreatic forms occur.  The phreatic caves/cavities include features characteristic of the mixing zone speleogenesis at the interface between freshwater (brackish water) lenses and the underlying seawater. They were found in various positions with respect to the paleokarstic surface, the deepest being about 75 m below the surface. Three indistinct horizons of cavities/caves and intermediate vugs were recognized. Subsequently, all cavities were completely filled with detrital sediments and speleothems in the phreatic and vadose zones. In general, the phreatic cavities of the lower two horizons are geopetally filled with mudstone derived from incomplete dissolution of the host rock and overlain by coarse-grained, blocky calcite. Shallower below the paleokarst surface, a large phreatic cave of the third horizon is filled with flowstone overlain by reddish micritic carbonate sediment with intercalated calcite rafts. In the upper part of the cave, sediments derived from the paleokarst surface are gradually becoming more abundant. Vadose channels, which may also intersect the cave sediments, are mainly filled with "pedogenic" material derived from the paleokarst surface. Immediately prior to marine transgression over the paleokarst surface, some cavities were filled with marine-derived microturbidites. In general, the diversity of cave fills and the amount of surface material decrease with distance from the paleokarst surface. Below the paleokarst surface, the δ13C and δ18O values of a host rock and cavity deposits show good correlation with trends significant for meteoric diagenesis. It is shown that deposits associated with phreatic caves can be of great importance for the study of the speleogenetic, geomorphological and hydrogeological evolution of certain palaeokarst regions.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


1977 ◽  
Vol 14 (10) ◽  
pp. 2348-2363 ◽  
Author(s):  
V. G. Ethier ◽  
F. A. Campbell

Local concentrations of tourmaline occur in the lower Proterozoic (Helikian) Aldridge Formation of southeastern British Columbia, in some places in association with stratiform lead–zinc mineralization as at the Sullivan, Stemwinder, and North Star orebodies. The amount of boron in the rock is as much as two orders of magnitude above average levels reported for the Aldridge Formation or other similar types of sedimentary rocks. The concentrations are not detrital, but are caused by an anomalously high boron level, in a local area, at the time of sedimentation. The appearance of tourmaline within rip-up clasts, and in laminae within pebbles, is evidence of syngenetic introduction of boron.Three populations of tourmalines, on the basis of composition as determined by microprobe analyses, are described from the area:(1) A Proterozoic stock intruding the Aldridge Formation contains abundant schorl.(2) A tourmaline intermediate in composition between dravite and schorl is typical of Aldridge metasediments. Texturally this type occurs as (a) fine felted aggregates in the footwall of the Sullivan orebody, (b) disseminated through waste beds, and (c) in local concentrations removed from the Sullivan orebody.(3) Coarse-grained recrystallized tourmaline associated with the Sullivan ore is magnesium-rich. Recrystallization is erratic, and is probably related to uneven heat flow during metamorphism and to differences in bulk composition.The economic importance of tourmaline concentrations in the Aldridge Formation is their association in both space and time with stratiform sulfides.


GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 99-136
Author(s):  
Simon Virgo ◽  
Max Arndt ◽  
Zoé Sobisch ◽  
Janos L. Urai

ABSTRACT We present a high-resolution structural study on the dip slope of the southern flank of Jabal Shams in the central Oman Mountains. The objectives of the study were: (1) to test existing satellite-based interpretations of structural elements in the area; (2) prepare an accurate geological map; and (3) collect an extensive structural dataset of fault and bedding planes, fault throws, veins and joints. These data are compared with existing models of tectonic evolution in the Oman Mountains and the subsurface, and used to assess the applicability of these structures as analogs for fault and fracture systems in subsurface carbonate reservoirs in Oman. The complete exposure of clean rock incised by deep wadis allowed detailed mapping of the complex fault, vein and joint system hosted by Member 3 of the Cretaceous Kahmah Group. The member was divided into eight units for mapping purposes, in about 100 m of vertical stratigraphy. The map was almost exclusively based on direct field observations. It includes measurement of fault throw in many locations and the construction of profiles, which are accurate to within a few meters. Ground-truthing of existing satellite-based interpretations of structural elements showed that faults can be mapped with high confidence using remote-sensing data. The faults range into the subseismic scale with throws as little as a few decimeters. However, the existing interpretation of lineaments as cemented fractures was shown to be incorrect: the majority of these are open fractures formed along reactivated veins. The most prominent structure in the study area is a conjugate set of ESE-striking faults with throws resolvable from several centimeters to hundreds of meters. These faults contain bundles of coarse-grained calcite veins, which may be brecciated during reactivation. We interpret these faults to be a conjugate normal- to oblique fault set, which was rotated together with bedding during the folding of the Al Jabal al-Akhdar anticline. There are many generations of calcite veins with minor offset and at high-angle-to-bedding, sometimes in en-echelon sets. Analysis of clear overprinting relationships between veins at high-angle-to-bedding is consistent with the interpretations of Holland et al. (2009a); however we interpret the anticlockwise rotation of vein strike orientation to start before and end after the normal faulting. The normal faults post-date the bedding-parallel shear veins in the study area. Thus these faults formed after the emplacement of the Semail and Hawasina Nappes. They were previously interpreted to be of the same age as the regional normal- to oblique-slip faults in the subsurface of northern Oman and the United Arab Emirates, which evolved during the early deposition of the Campanian Fiqa Formation as proposed by Filbrandt et al. (2006). We interpret them also to be coeval with the Phase I extension of Fournier et al. (2006). The reactivation of these faults and the evolution of new veins was followed by folding of the Al Jabal al-Akhdar anticline and final uplift and jointing by reactivation of pre-existing microveins. Thus the faults in the study area are of comparable kinematics and age as those in the subsurface. However they formed at much greater depth and fluid pressures, so that direct use of these structures as analogs for fault and fracture systems in subsurface reservoirs in Oman should be undertaken with care.


2007 ◽  
Vol 40 (2) ◽  
pp. 996 ◽  
Author(s):  
S. Tombros ◽  
K. St. Seymour

The Cu-Te-bearing pyrite deposits of Hermione, Argolis are hosted in Miocenic ophiolites. The ophiolites are overlain by a shale-sandstone formation with intercalations of limestones and manganiferous sedimentary rocks. The ore deposits form irregular lenticular or stratiform ore bodies, and veins. These ore bodies are related to volcanic activity in an arc-related rift at the margins of a palaeocontinent. Late N- to NNE-trending, sinistral, milky quartz-pyrite-calcite veins cut the host ophiolites. Alteration haloes of quartz-calcite, albite-sericitechlorite, and chalcedony-epidote-clay minerals are developed in the lavas as concentric shells, or as envelops that parallel the quartz veins. The telluriumbearing mineralization is developed in two successive stages, characterized by the assemblages: pyrite-(pyrrhotite)-magnetite-chalcopyrite-sphalerite (Stage I) and galena-sphalerite-freibergite-marcasite-chalcocite (Stage II), followed by a supergene stage. The cobaltiferous pyrite-chalcopyrite geothermometer defined two ranges of last-equilibration temperatures: 220° to 250°Cfor Stage I, and 120° to 195°Cfor Stage II. The calculated δ18 Ο and SD compositions of the mineralizing fluids, at 200° and 250°C, reflect the dominance of a magmatic component. The calculated δ SH2S fluid values reveal a magmatic source for the sulphur, with minor contribution from submarine sediments, whereas tellurium is proposed to be derived from a mafic-ultramafic source.


2002 ◽  
pp. 13-43 ◽  
Author(s):  
Dragoman Rabrenovic ◽  
Nebojsa Vasic ◽  
Jovanka Mitrovic-Petrovic ◽  
Vladan Radulovic ◽  
Barbara Radulovic ◽  
...  

Sedimentary rocks of the Upper Cretaceous basal series found at the village of Planinica, Western Serbia, are composed of thick coarse clastics and beds and intercalations of medium- to fine-grained clastics. The series lies transgressively over Jurassic serpentinite and peridotite, and under Upper Miocene marlstone and marly limestone. Sedimentary, petrographic, paleontological, and biostratigraphic characteristics of the basal series are described and its lithological members and their structural features are identified. From medium-grained sandy matrix in thick coarse clastics, two ammonite taxa, four brachiopod taxa (including the new taxa Orbirhynchia oweni and "Terebratula" n. gen. et sp.), and eleven echinoid taxa are described. The brachiopod species Kingena concinna Owen is used in dating the basal series as Middle Cenomanian, whereas limestone fragments in coarse clastics correspond to the Late Albian and Early Cenomanian.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fathan Hanifi Mada Mahendra ◽  
I Gde Budi Indrawan ◽  
Sugeng Sapto Surjono

The Gedangsari and Ngawen area is predominantly composed of volcanic and volcaniclastic sequencesdistributed east – west direction of the northern parts of Southern Mountain. The massive tectonism as well as tropical climatein this region have been producing weathering profiles in varying thickness which inevitably affects thegeotechnical properties. This study aims to assess the dominant weathering profileof the lower part of Kebo-Butak Formation as well as evaluating the distribution of the discontinuity. In order to know the dominant weathering profile and discontinuity evaluation, this study utilizes a total of  26 panels from five stations investigated through a geotechnical data acquisition including the geological condition, weathering zones, joint distribution, and discontinuity characteristics. The result shows four types of dominant weathering profiles in lower part of Kebo-Butak Formation called as dominant weathering profile A, B, C, and D. Profile A, B, C consisted of a relatively identical weathering degree pattern of fresh, slightly, moderately, completely weathered zone with the variation of thicknesses. However, the weathering degree in profile D reached the residual soil degree controlled by more intensive joints. The fine-grained sedimentary rocks also tends to have smaller spacing, shorter persistence, and higher weathering degree of discontinuities as compared to coarse-grained sedimentary rocks.


Sign in / Sign up

Export Citation Format

Share Document